Louis F J Piper

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4033832/louis-f-j-piper-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

68 181 6,139 46 h-index g-index citations papers 7,168 7.8 197 5.5 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
181	Oxygen Loss in Layered Oxide Cathodes for Li-Ion Batteries: Mechanisms, Effects, and Mitigation <i>Chemical Reviews</i> , 2022 ,	68.1	10
180	Laboratory-based Hard X-ray Photoelectron Spectroscopy for Fundamental and Industrial Research. <i>Vacuum and Surface Science</i> , 2021 , 64, 493-498	O	1
179	Perspectives for next generation lithium-ion battery cathode materials. <i>APL Materials</i> , 2021 , 9, 109201	5.7	8
178	Experimental and Theoretical Study of the Electronic Structures of Lanthanide Indium Perovskites LnInO. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 6387-6400	3.8	3
177	Digital Tuning of the Transition Temperature of Epitaxial VO2 Thin Films on MgF2 Substrates by Strain Engineering. <i>Advanced Materials Interfaces</i> , 2021 , 8, 2001790	4.6	3
176	Operando XAS to Illustrate the Importance of Electronic Conductivity in Vanadyl Phosphate Systems. <i>Journal of the Electrochemical Society</i> , 2021 , 168, 050502	3.9	0
175	An Electrochemical Study on NH4VOPO4: Can Ion-Exchange Improve Side Reactions?. <i>Journal of the Electrochemical Society</i> , 2021 , 168, 050513	3.9	1
174	Enhanced High-Rate Performance of Nanosized Single Crystal EVOPO4 with Niobium Substitution for Lithium-Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2021 , 168, 060519	3.9	1
173	Role of V-V dimers on structural, electronic, magnetic, and vibrational properties of VO2 by first-principles simulations and Raman spectroscopic analysis. <i>Physical Review B</i> , 2021 , 103,	3.3	3
172	Electrochemical Oxidative Fluorination of an Oxide Perovskite. <i>Chemistry of Materials</i> , 2021 , 33, 5757-5	76.8	2
171	Regeneration of degraded Li-rich layered oxide materials through heat treatment-induced transition metal reordering. <i>Energy Storage Materials</i> , 2021 , 35, 99-107	19.4	12
170	Could Irradiation Introduce Oxidized Oxygen Signals in Resonant Inelastic X-ray Scattering of Battery Electrodes?. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 1138-1143	6.4	5
169	Dual-stage K+ ion intercalation in V2O5-conductive polymer composites. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 15629-15636	13	6
168	Experimental considerations to study Li-excess disordered rock salt cathode materials. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 1720-1732	13	5
167	Electrochemical Utilization of Iron IV in the Li1.3Fe0.4Nb0.3O2 Disordered Rocksalt Cathode. <i>Batteries and Supercaps</i> , 2021 , 4, 771-777	5.6	1
166	Whither Mn Oxidation in Mn-Rich Alkali-Excess Cathodes?. ACS Energy Letters, 2021, 6, 1055-1064	20.1	7
165	Structure, Composition, and Electrochemistry of Chromium-Substituted LiVOPO4. <i>ACS Applied Energy Materials</i> , 2021 , 4, 1421-1430	6.1	3

164	Structural Phase Transitions of NbO2: Bulk versus Surface. <i>Chemistry of Materials</i> , 2021 , 33, 1416-1425	9.6	4
163	Microwave-assisted solvothermal synthesis of LiVyM1¶OPO4 (M = Mn, Cr, Ti, Zr, Nb, Mo, W) cathode materials for lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 6933-6944	13	3
162	Simultaneous Structural and Electronic Transitions in Epitaxial VO_{2}/TiO_{2}(001). <i>Physical Review Letters</i> , 2020 , 124, 196402	7.4	18
161	Mapping Competitive Reduction upon Charging in LiNi0.8Co0.15Al0.05O2 Primary Particles. <i>Chemistry of Materials</i> , 2020 , 32, 6161-6175	9.6	3
160	Designing catalysts for water splitting based on electronic structure considerations. <i>Electronic Structure</i> , 2020 , 2, 023001	2.6	21
159	Ultrafast ion transport at a cathodellectrolyte interface and its strong dependence on salt solvation. <i>Nature Energy</i> , 2020 , 5, 578-586	62.3	35
158	Dissociate lattice oxygen redox reactions from capacity and voltage drops of battery electrodes. <i>Science Advances</i> , 2020 , 6, eaaw3871	14.3	55
157	How Bulk Sensitive is Hard X-ray Photoelectron Spectroscopy: Accounting for the Cathode-Electrolyte Interface when Addressing Oxygen Redox. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 2106-2112	6.4	25
156	Quantifying the Capacity Contributions during Activation of Li2MnO3. ACS Energy Letters, 2020, 5, 634-	6≱∂ .1	68
155	Transition Metal Migration Can Facilitate Ionic Diffusion in Defect Garnet-Based Intercalation Electrodes. <i>ACS Energy Letters</i> , 2020 , 5, 1448-1455	20.1	3
154	The morphology of VO/TiO(001): terraces, facets, and cracks. <i>Scientific Reports</i> , 2020 , 10, 22374	4.9	4
153	Valence-to-core X-ray emission spectroscopy of vanadium oxide and lithiated vanadyl phosphate materials. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 16332-16344	13	8
152	Vanadyl Phosphates AxVOPO4 (A = Li, Na, K) as Multielectron Cathodes for Alkali-Ion Batteries. <i>Advanced Energy Materials</i> , 2020 , 10, 2002638	21.8	11
151	Directly measuring the structural transition pathways of strain-engineered VO thin films. <i>Nanoscale</i> , 2020 , 12, 18857-18863	7.7	8
150	Influence of Polymorphism on the Electronic Structure of Ga2O3. Chemistry of Materials, 2020, 32, 8460) -8 . 6 70	21
149	Elucidating the Mechanistic Origins of Photocatalytic Hydrogen Evolution Mediated by MoS/CdS Quantum-Dot Heterostructures. <i>ACS Applied Materials & Emp; Interfaces</i> , 2020 , 12, 43728-43740	9.5	24
148	Resonant doping for high mobility transparent conductors: the case of Mo-doped In2O3. <i>Materials Horizons</i> , 2020 , 7, 236-243	14.4	30
147	Energy Spotlight. ACS Energy Letters, 2019 , 4, 2763-2769	20.1	0

146	Band edge evolution of transparent ZnM2IIIO4 (MIII=Co, Rh, Ir) spinels. <i>Physical Review B</i> , 2019 , 100,	3.3	10
145	Room Temperature Metallic Conductivity in a Metal-Organic Framework Induced by Oxidation. Journal of the American Chemical Society, 2019 , 141, 16323-16330	16.4	49
144	Intrinsic Challenges to the Electrochemical Reversibility of the High Energy Density Copper(II) Fluoride Cathode Material. <i>ACS Applied Energy Materials</i> , 2019 , 2, 5243-5253	6.1	15
143	Nonstoichiometry and Defects in Hydrothermally Synthesized LiVOPO4. <i>ACS Applied Energy Materials</i> , 2019 , 2, 4792-4800	6.1	6
142	Distinction between Intrinsic and X-ray-Induced Oxidized Oxygen States in Li-Rich 3d Layered Oxides and LiAlO2. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 13201-13207	3.8	28
141	Rational synthesis and electrochemical performance of LiVOPO4 polymorphs. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 8423-8432	13	16
140	An improved laboratory-based x-ray absorption fine structure and x-ray emission spectrometer for analytical applications in materials chemistry research. <i>Review of Scientific Instruments</i> , 2019 , 90, 02410	6 ^{1.7}	51
139	Comprehensive study of a versatile polyol synthesis approach for cathode materials for Li-ion batteries. <i>Nano Research</i> , 2019 , 12, 2238-2249	10	5
138	Direct observation of delithiation as the origin of analog memristance in LixNbO2. <i>APL Materials</i> , 2019 , 7, 071103	5.7	7
137	Revisiting the charge compensation mechanisms in LiNi0.8Co0.2JAlyO2 systems. <i>Materials Horizons</i> , 2019 , 6, 2112-2123	14.4	41
137		14.4	46
	Horizons, 2019 , 6, 2112-2123 Structural water and disordered structure promote aqueous sodium-ion energy storage in	• •	
136	Structural water and disordered structure promote aqueous sodium-ion energy storage in sodium-birnessite. <i>Nature Communications</i> , 2019 , 10, 4975 Diffuson-driven ultralow thermal conductivity in amorphous Nb2O5 thin films. <i>Physical Review</i>	17.4	46
136 135	Structural water and disordered structure promote aqueous sodium-ion energy storage in sodium-birnessite. <i>Nature Communications</i> , 2019 , 10, 4975 Diffuson-driven ultralow thermal conductivity in amorphous Nb2O5 thin films. <i>Physical Review Materials</i> , 2019 , 3, Evidence of a second-order Peierls-driven metal-insulator transition in crystalline NbO2. <i>Physical</i>	17.4 3.2	46
136 135 134	Structural water and disordered structure promote aqueous sodium-ion energy storage in sodium-birnessite. <i>Nature Communications</i> , 2019 , 10, 4975 Diffuson-driven ultralow thermal conductivity in amorphous Nb2O5 thin films. <i>Physical Review Materials</i> , 2019 , 3, Evidence of a second-order Peierls-driven metal-insulator transition in crystalline NbO2. <i>Physical Review Materials</i> , 2019 , 3, Adsorption-controlled growth and properties of epitaxial SnO films. <i>Physical Review Materials</i> , 2019	17.4 3.2 3.2	46 15
136 135 134	Structural water and disordered structure promote aqueous sodium-ion energy storage in sodium-birnessite. Nature Communications, 2019, 10, 4975 Diffuson-driven ultralow thermal conductivity in amorphous Nb2O5 thin films. Physical Review Materials, 2019, 3, Evidence of a second-order Peierls-driven metal-insulator transition in crystalline NbO2. Physical Review Materials, 2019, 3, Adsorption-controlled growth and properties of epitaxial SnO films. Physical Review Materials, 2019, 3, Cooperative effects of strain and electron correlation in epitaxial VO 2 and NbO 2. Journal of	17.4 3.2 3.2 3.2	46 15 10
136 135 134 133	Structural water and disordered structure promote aqueous sodium-ion energy storage in sodium-birnessite. Nature Communications, 2019, 10, 4975 Diffuson-driven ultralow thermal conductivity in amorphous Nb2O5 thin films. Physical Review Materials, 2019, 3, Evidence of a second-order Peierls-driven metal-insulator transition in crystalline NbO2. Physical Review Materials, 2019, 3, Adsorption-controlled growth and properties of epitaxial SnO films. Physical Review Materials, 2019, 3, Cooperative effects of strain and electron correlation in epitaxial VO 2 and NbO 2. Journal of Applied Physics, 2019, 125, 082539 Transition from electron accumulation to depletion at EGa2O3 surfaces: The role of hydrogen and	17.4 3.2 3.2 2.5	46 15 10 9

(2017-2019)

128	Accelerated optimization of transparent, amorphous zinc-tin-oxide thin films for optoelectronic applications. <i>APL Materials</i> , 2019 , 7, 022509	5.7	12
127	High Reversibility of Lattice Oxygen Redox Quantified by Direct Bulk Probes of Both Anionic and Cationic Redox Reactions. <i>Joule</i> , 2019 , 3, 518-541	27.8	156
126	The Middle Road Less Taken: Electronic-Structure-Inspired Design of Hybrid Photocatalytic Platforms for Solar Fuel Generation. <i>Accounts of Chemical Research</i> , 2019 , 52, 645-655	24.3	20
125	Electronic and transport properties of Li-doped NiO epitaxial thin films. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 2275-2282	7.1	85
124	Evolution of the Electrode E lectrolyte Interface of LiNi0.8Co0.15Al0.05O2 Electrodes Due to Electrochemical and Thermal Stress. <i>Chemistry of Materials</i> , 2018 , 30, 958-969	9.6	60
123	Automated generation and ensemble-learned matching of X-ray absorption spectra. <i>Npj Computational Materials</i> , 2018 , 4,	10.9	54
122	Electrochemical Performance of Nanosized Disordered LiVOPO. ACS Omega, 2018, 3, 7310-7323	3.9	22
121	KVOPO4: A New High Capacity Multielectron Na-Ion Battery Cathode. <i>Advanced Energy Materials</i> , 2018 , 8, 1800221	21.8	28
120	Interconversion of intrinsic defects in SrTiO3(001). <i>Physical Review B</i> , 2018 , 97,	3.3	13
119	Enabling multi-electron reaction of EVOPO to reach theoretical capacity for lithium-ion batteries. <i>Chemical Communications</i> , 2018 , 54, 7802-7805	5.8	36
118	Scalable Memdiodes Exhibiting Rectification and Hysteresis for Neuromorphic Computing. <i>Scientific Reports</i> , 2018 , 8, 12935	4.9	11
117	Surface Structural and Chemical Evolution of Layered LiNi0.8Co0.15Al0.05O2 (NCA) under High Voltage and Elevated Temperature Conditions. <i>Chemistry of Materials</i> , 2018 , 30, 8431-8445	9.6	32
116	Hole Extraction by Design in Photocatalytic Architectures Interfacing CdSe Quantum Dots with Topochemically Stabilized Tin Vanadium Oxide. <i>Journal of the American Chemical Society</i> , 2018 , 140, 17	169:47	1 7 4
115	Role of disorder in limiting the true multi-electron redox in £LiVOPO4. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 20669-20677	13	17
114	Correlated Polyhedral Rotations in the Absence of Polarons during Electrochemical Insertion of Lithium in ReO3. <i>ACS Energy Letters</i> , 2018 , 3, 2513-2519	20.1	23
113	Structural Changes in a High-Energy Density VO2F Cathode upon Heating and Li Cycling. <i>ACS Applied Energy Materials</i> , 2018 , 1, 4514-4521	6.1	7
112	Teaching advanced science concepts through Freshman Research Immersion. <i>European Journal of Physics</i> , 2017 , 38, 025704	0.8	3
111	High-efficiency in situ resonant inelastic x-ray scattering (iRIXS) endstation at the Advanced Light Source. <i>Review of Scientific Instruments</i> , 2017 , 88, 033106	1.7	86

110	Structure Evolution and Thermal Stability of High-Energy- Density Li-Ion Battery Cathode Li2VO2F. Journal of the Electrochemical Society, 2017 , 164, A1552-A1558	3.9	20
109	Electrolyte-Induced Surface Transformation and Transition-Metal Dissolution of Fully Delithiated LiNiCoAlO. <i>Langmuir</i> , 2017 , 33, 9333-9353	4	57
108	Reducing orbital occupancy in VO2 suppresses Mott physics while Peierls distortions persist. <i>Physical Review B</i> , 2017 , 96,	3.3	20
107	Reaction Heterogeneity in LiNi0.8Co0.15Al0.05O2 Induced by Surface Layer. <i>Chemistry of Materials</i> , 2017 , 29, 7345-7352	9.6	108
106	Mitigating Cation Diffusion Limitations and Intercalation-Induced Framework Transitions in a 1D Tunnel-Structured Polymorph of V2O5. <i>Chemistry of Materials</i> , 2017 , 29, 10386-10397	9.6	18
105	Editors@hoice@rowth of Ambient Induced Surface Impurity Species on Layered Positive Electrode Materials and Impact on Electrochemical Performance. <i>Journal of the Electrochemical Society</i> , 2017 , 164, A3727-A3741	3.9	104
104	X-ray photoelectron spectra for single-crystal Ti2O3: Experiment and theory. <i>Physical Review B</i> , 2017 , 96,	3.3	15
103	Electrochemical and Thermal Stress of LiNi0.8Co0.15Al0.05O2Electrodes: Evolution of Aluminum Surface Environments. <i>ECS Transactions</i> , 2017 , 80, 197-206	1	3
102	Stability of the M2 phase of vanadium dioxide induced by coherent epitaxial strain. <i>Physical Review B</i> , 2016 , 94,	3.3	51
101	Tuning a strain-induced orbital selective Mott transition in epitaxial VO2. <i>Physical Review B</i> , 2016 , 93,	3.3	24
100	Direct Observation of Electrostatically Driven Band Gap Renormalization in a Degenerate Perovskite Transparent Conducting Oxide. <i>Physical Review Letters</i> , 2016 , 116, 027602	7.4	83
99	Mapping polaronic states and lithiation gradients in individual V2O5 nanowires. <i>Nature Communications</i> , 2016 , 7, 12022	17.4	85
98	Lone-Pair Stabilization in Transparent Amorphous Tin Oxides: A Potential Route to p-Type Conduction Pathways. <i>Chemistry of Materials</i> , 2016 , 28, 4706-4713	9.6	26
97	Visible Light-Driven H2 Production over Highly Dispersed Ruthenia on Rutile TiO2 Nanorods. <i>ACS Catalysis</i> , 2016 , 6, 407-417	13.1	63
96	The Anode Challenge for Lithium-Ion Batteries: A Mechanochemically Synthesized Sn-Fe-C Composite Anode Surpasses Graphitic Carbon. <i>Advanced Science</i> , 2016 , 3, 1500229	13.6	23
95	Thermodynamics, Kinetics and Structural Evolution of LiVOPO4 over Multiple Lithium Intercalation. <i>Chemistry of Materials</i> , 2016 , 28, 1794-1805	9.6	56
94	Uniform second Li ion intercalation in solid state ?-LiVOPO4. Applied Physics Letters, 2016, 109, 053904	3.4	17
93	Programming Interfacial Energetic Offsets and Charge Transfer in Pb0.33V2O5/Quantum-Dot Heterostructures: Tuning Valence-Band Edges to Overlap with Midgap States. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 28992-29001	3.8	9

(2014-2016)

92	Surface degradation of Li1Ni0.80Co0.15Al0.05O2 cathodes: Correlating charge transfer impedance with surface phase transformations. <i>Applied Physics Letters</i> , 2016 , 108, 263902	3.4	55
91	Three-dimensional ruthenium-doped TiO2 sea urchins for enhanced visible-light-responsive H2 production. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 15972-9	3.6	40
90	What Happens to LiMnPO4 upon Chemical Delithiation?. <i>Inorganic Chemistry</i> , 2016 , 55, 4335-43	5.1	14
89	Molybdenum Substituted Vanadyl Phosphate EVOPO4 with Enhanced Two-Electron Transfer Reversibility and Kinetics for Lithium-Ion Batteries. <i>Chemistry of Materials</i> , 2016 , 28, 3159-3170	9.6	31
88	Correlating Lithium Hydroxyl Accumulation with Capacity Retention in V2O5 Aerogel Cathodes. <i>ACS Applied Materials & District Access</i> , 2016 , 8, 11532-8	9.5	19
87	Electrode Reaction Mechanism of Ag2VO2PO4 Cathode. <i>Chemistry of Materials</i> , 2016 , 28, 3428-3434	9.6	5
86	Integrating IPb0.33V2O5 Nanowires with CdSe Quantum Dots: Toward Nanoscale Heterostructures with Tunable Interfacial Energetic Offsets for Charge Transfer. <i>Chemistry of Materials</i> , 2015 , 27, 2468-2479	9.6	17
85	Potassium and ion beam induced electron accumulation in InN. Surface Science, 2015, 632, 154-157	1.8	5
84	Band Gap Dependence on Cation Disorder in ZnSnN2 Solar Absorber. <i>Advanced Energy Materials</i> , 2015 , 5, 1501462	21.8	75
83	Hole-induced insulator-to-metal transition in La1\(\mathbb{B}\)SrxCrO3 epitaxial films. <i>Physical Review B</i> , 2015 , 91,	3.3	60
82	Evidence of extreme type-III band offset at buried n-type CdO/p-type SnTe interfaces. <i>Physical Review B</i> , 2015 , 91,	3.3	7
81	Deep subgap feature in amorphous indium gallium zinc oxide: Evidence against reduced indium. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2015 , 212, 1471-1475	1.6	22
80	Perovskite Sr-Doped LaCrO3 as a New p-Type Transparent Conducting Oxide. <i>Advanced Materials</i> , 2015 , 27, 5191-5	24	125
79	X-Ray Spectroscopy of Ultra-Thin Oxide/Oxide Heteroepitaxial Films: A Case Study of Single-Nanometer VO2/TiO2. <i>Materials</i> , 2015 , 8, 5452-5466	3.5	19
78	Electronic and magnetic properties of epitaxial perovskite SrCrO(D 0 1). <i>Journal of Physics Condensed Matter</i> , 2015 , 27, 245605	1.8	8
77	Interfacial Effects in £ixVOPO4 and Evolution of the Electronic Structure. <i>Chemistry of Materials</i> , 2015 , 27, 8211-8219	9.6	33
76	Hierarchical Heterogeneity at the CeOxIIiO2 Interface: Electronic and Geometric Structural Influence on the Photocatalytic Activity of Oxide on Oxide Nanostructures. <i>Journal of Physical Chemistry C</i> , 2015 , 150127101000001	3.8	40
75	Electronic Structure of ENaxV2O5 (x 🛈 .33) Polycrystalline Films: Growth, Spectroscopy, and Theory. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 1081-1094	3.8	17

74	Understanding the stability of MnPO4. Journal of Materials Chemistry A, 2014, 2, 12827	13	19
73	Low-energy V t2g orbital excitations in NdVO3. <i>Journal of Physics Condensed Matter</i> , 2014 , 26, 455603	1.8	3
72	Bi-induced band gap reduction in epitaxial InSbBi alloys. <i>Applied Physics Letters</i> , 2014 , 105, 212101	3.4	38
71	Origin of deep subgap states in amorphous indium gallium zinc oxide: Chemically disordered coordination of oxygen. <i>Applied Physics Letters</i> , 2014 , 104, 232108	3.4	61
70	Electron lone pair distortion facilitated metal-insulator transition in EPb0.33V2O5 nanowires. <i>Applied Physics Letters</i> , 2014 , 104, 182108	3.4	14
69	Characterization of Tin Oxide Grown by Molecular Beam Epitaxy. <i>Materials Research Society Symposia Proceedings</i> , 2014 , 1633, 13-18		1
68	Nature of the metal insulator transition in ultrathin epitaxial vanadium dioxide. <i>Nano Letters</i> , 2013 , 13, 4857-61	11.5	77
67	Understanding the defect chemistry of tin monoxide. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 8194	7.1	59
66	La-doped BaSnO3Degenerate perovskite transparent conducting oxide: Evidence from synchrotron x-ray spectroscopy. <i>Applied Physics Letters</i> , 2013 , 103, 042105	3.4	74
65	Origin of the Bipolar Doping Behavior of SnO from X-ray Spectroscopy and Density Functional Theory. <i>Chemistry of Materials</i> , 2013 , 25, 3114-3123	9.6	107
64	Adsorption-controlled growth of BiVO4 by molecular-beam epitaxy. APL Materials, 2013, 1, 042112	5.7	54
63	The band structure of WO3 and non-rigid-band behaviour in Na0.67WO3 derived from soft x-ray spectroscopy and density functional theory. <i>Journal of Physics Condensed Matter</i> , 2013 , 25, 165501	1.8	7
62	Elucidating the Nature of Pseudo Jahn Teller Distortions in LixMnPO4: Combining Density Functional Theory with Soft and Hard X-ray Spectroscopy. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 10383-10396	3.8	61
61	Determination of the individual atomic site contribution to the electronic structure of 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA). <i>Journal of Chemical Physics</i> , 2013 , 139, 184711	3.9	11
60	Electronic band structure of graphene from resonant soft x-ray spectroscopy: The role of core-hole effects. <i>Physical Review B</i> , 2012 , 86,	3.3	25
59	Role of lone pair electrons in determining the optoelectronic properties of BiCuOSe. <i>Physical Review B</i> , 2012 , 85,	3.3	37
58	Photoemission evidence for crossover from Peierls-like to Mott-like transition in highly strained VO2. <i>Physical Review B</i> , 2012 , 86,	3.3	29
57	Strain dependence of bonding and hybridization across the metal-insulator transition of VO2. <i>Physical Review B</i> , 2012 , 85,	3.3	24

(2009-2012)

56	Probing the effect of relative molecular orientation on the photovoltaic device performance of an organic bilayer heterojunction using soft x-ray spectroscopies. <i>Applied Physics Letters</i> , 2012 , 100, 2633	02 ^{3.4}	11	
55	First-principles calculation of resonant x-ray emission spectra applied to ZnO. <i>Physical Review B</i> , 2011 , 83,	3.3	5	
54	Vapor phase polymerization of poly (3,4-ethylenedioxythiophene) on flexible substrates for enhanced transparent electrodes. <i>Synthetic Metals</i> , 2011 , 161, 1159-1165	3.6	43	
53	The nature of electron lone pairs in BiVO4. <i>Applied Physics Letters</i> , 2011 , 98, 212110	3.4	81	
52	Soft X-Ray Spectroscopic Study of Dense Strontium-Doped Lanthanum Manganite Cathodes for Solid Oxide Fuel Cell Applications. <i>Journal of the Electrochemical Society</i> , 2011 , 158, B99	3.9	21	
51	Orbital anisotropy and low-energy excitations of the quasi-one-dimensional conductor EBr0.17V2O5. <i>Physical Review B</i> , 2011 , 84,	3.3	13	
50	Electronic band structure information of GdN extracted from x-ray absorption and emission spectroscopy. <i>Applied Physics Letters</i> , 2010 , 96, 032101	3.4	18	
49	Direct evidence of metallicity at ZnO (0001D)[11] surfaces from angle-resolved photoemission spectroscopy. <i>Physical Review B</i> , 2010 , 81,	3.3	45	
48	Soft x-ray spectroscopic study of the ferromagnetic insulator V0.82Cr0.18O2. <i>Physical Review B</i> , 2010 , 82,	3.3	23	
47	Soft x-ray spectroscopy study of the element and orbital contributions to the electronic structure of copper hexadecafluoro-phthalocyanine. <i>Physical Review B</i> , 2010 , 81,	3.3	25	
46	Electronic Structure of C60/Phthalocyanine/ITO Interfaces Studied using Soft X-ray Spectroscopies. Journal of Physical Chemistry C, 2010 , 114, 1928-1933	3.8	91	
45	Soft X-ray Spectroscopy of C60/Copper Phthalocyanine/MoO3 Interfaces: Role of Reduced MoO3 on Energetic Band Alignment and Improved Performance. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 18252-18257	3.8	33	
44	Elucidating the factors that determine the open circuit voltage in discrete heterojunction organic photovoltaic cells. <i>Journal of Materials Chemistry</i> , 2010 , 20, 1173-1178		25	
43	Electronic structure of N,NQethylene-bis(1,1,1-trifluoropentane-2,4-dioneiminato)-copper(II) (Cu-TFAC), from soft X-ray spectroscopies and density functional theory calculations. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 3171-7	3.6	3	
42	Electronic structure of In2O3 from resonant x-ray emission spectroscopy. <i>Applied Physics Letters</i> , 2009 , 94, 022105	3.4	38	
41	SURFACE SEGREGATION STUDIES OF SOFC CATHODES: COMBINING SOFT X-RAYS AND ELECTROCHEMICAL IMPEDENCE SPECTROSCOPY. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1217, 1			
40	Electronic structure of the organic semiconductor copper tetraphenylporphyrin (CuTPP). <i>Applied Surface Science</i> , 2009 , 256, 720-725	6.7	18	
39	Comparative study of bandwidths in copper delafossites from x-ray emission spectroscopy. <i>Physical Review B</i> , 2009 , 80,	3.3	33	

38	X-ray spectroscopic study of the electronic structure of CuCrO2. <i>Physical Review B</i> , 2009 , 79,	3.3	82
37	Electronic structure of the organic semiconductor Alq3 (aluminum tris-8-hydroxyquinoline) from soft x-ray spectroscopies and density functional theory calculations. <i>Journal of Chemical Physics</i> , 2008 , 129, 224705	3.9	23
36	Nature of the band gap of In2O3 revealed by first-principles calculations and x-ray spectroscopy. <i>Physical Review Letters</i> , 2008 , 100, 167402	7.4	498
35	Soft X-ray spectroscopy study of electronic structure in the organic semiconductor titanyl phthalocyanine (TiO-Pc). <i>Journal of Materials Chemistry</i> , 2008 , 18, 1792		20
34	Observation of an inverted band structure near the surface of InN. <i>Europhysics Letters</i> , 2008 , 83, 47003	1.6	7
33	Observation of quantized subband states and evidence for surface electron accumulation in CdO from angle-resolved photoemission spectroscopy. <i>Physical Review B</i> , 2008 , 78,	3.3	70
32	Electronic structure of single-crystal rocksalt CdO studied by soft x-ray spectroscopies and ab initio calculations. <i>Physical Review B</i> , 2008 , 77,	3.3	30
31	Determination of the branch-point energy of InN: Chemical trends in common-cation and common-anion semiconductors. <i>Physical Review B</i> , 2008 , 77,	3.3	96
30	The local electronic structure of tin phthalocyanine studied by resonant soft X-ray emission spectroscopies. <i>Applied Surface Science</i> , 2008 , 255, 764-766	6.7	6
29	Band structure of ZnO from resonant x-ray emission spectroscopy. <i>Physical Review B</i> , 2008 , 78,	3.3	67
28	Ab-Initio Studies of Electronic and Spectroscopic Properties of MgO, ZnO and CdO. <i>Journal of the Korean Physical Society</i> , 2008 , 53, 2811-2815	0.6	22
27	Growth of dilute nitride alloys of GaInSb lattice-matched to GaSb. <i>Journal of Crystal Growth</i> , 2007 , 304, 338-341	1.6	8
26	Doping-dependence of subband energies in quantized electron accumulation at InN surfaces. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2007 , 204, 536-542	1.6	4
25	X-ray photoemission studies of the electronic structure of single-crystalline CdO(100). <i>Superlattices and Microstructures</i> , 2007 , 42, 197-200	2.8	17
24	In adlayers on c-plane InN surfaces: A polarity-dependent study by x-ray photoemission spectroscopy. <i>Physical Review B</i> , 2007 , 76,	3.3	64
23	Electronic structure of InN studied using soft x-ray emission, soft x-ray absorption, and quasiparticle band structure calculations. <i>Physical Review B</i> , 2007 , 76,	3.3	16
22	Dilute antimonide nitrides for very long wavelength infrared applications 2006 , 6206, 201		13
21	Origin of the n-type conductivity of InN: The role of positively charged dislocations. <i>Applied Physics Letters</i> , 2006 , 88, 252109	3.4	134

20	Band anticrossing in GaNxSb1⊠. <i>Applied Physics Letters</i> , 2006 , 89, 111921	3.4	49
19	Quantized electron accumulation states in indium nitride studied by angle-resolved photoemission spectroscopy. <i>Physical Review Letters</i> , 2006 , 97, 237601	7.4	91
18	Transition from electron accumulation to depletion at InGaN surfaces. <i>Applied Physics Letters</i> , 2006 , 89, 202110	3.4	76
17	Electron depletion at InAs free surfaces: Doping-induced acceptorlike gap states. <i>Physical Review B</i> , 2006 , 73,	3.3	59
16	InN: Fermi level stabilization by low-energy ion bombardment. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2006 , 3, 1841-1845		4
15	Scanning tunnelling spectroscopy of quantized electron accumulation at InxGa1IAN surfaces. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2006 , 203, 85-92	1.6	16
14	Inversion and accumulation layers at InN surfaces. Journal of Crystal Growth, 2006, 288, 268-272	1.6	33
13	Electron accumulation at InN/AlN and InN/GaN interfaces. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2005 , 2, 2246-2249		18
12	Photoluminescence spectroscopy of bandgap reduction in dilute InNAs alloys. <i>Applied Physics Letters</i> , 2005 , 87, 182114	3.4	47
11	Valence-band structure of InN from x-ray photoemission spectroscopy. <i>Physical Review B</i> , 2005 , 72,	3.3	55
10	Clean wurtzite InN surfaces prepared with atomic hydrogen. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2005 , 23, 617-620	2.9	47
9	Band gap reduction in GaNSb alloys due to the anion mismatch. <i>Applied Physics Letters</i> , 2005 , 87, 13210	013.4	44
8	Electron spectroscopy of dilute nitrides. <i>Journal of Physics Condensed Matter</i> , 2004 , 16, S3201-S3214	1.8	7
7	FuchsKliewer phonon excitations in GaNAs alloys. <i>Journal of Applied Physics</i> , 2004 , 95, 8466-8468	2.5	1
6	Indium nitride: Evidence of electron accumulation. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 2004 , 22, 2175		37
5	Temperature invariance of InN electron accumulation. <i>Physical Review B</i> , 2004 , 70,	3.3	38
4	Core-level photoemission spectroscopy of nitrogen bonding in GaNxAs1\(\mathbb{B}\) alloys. <i>Applied Physics Letters</i> , 2004 , 85, 1550-1552	3.4	27
3	Origin of electron accumulation at wurtzite InN surfaces. <i>Physical Review B</i> , 2004 , 69,	3.3	189

Pushing the limit of 3d transition metal-based layered oxides that use both cation and anion redox for energy storage. *Nature Reviews Materials*,

73.3 10

What is the Role of Nb in Nickel-Rich Layered Oxide Cathodes for Lithium-Ion Batteries?. *ACS Energy Letters*,1377-1382

20.1 34