
Somshuvra Mukhopadhyay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4033582/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of excretion in manganese homeostasis and neurotoxicity: a historical perspective. American Journal of Physiology - Renal Physiology, 2022, 322, G79-G92.	1.6	19
2	Analysis of 1,25-Dihydroxyvitamin D ₃ Genomic Action Reveals Calcium-Regulating and Calcium-Independent Effects in Mouse Intestine and Human Enteroids. Molecular and Cellular Biology, 2021, 41, .	1.1	18
3	Tamoxifen Derivatives Alter Retromer-Dependent Endosomal Tubulation and Sorting to Block Retrograde Trafficking of Shiga Toxins. Toxins, 2021, 13, 424.	1.5	5
4	Up-regulation of the manganese transporter SLC30A10 by hypoxia-inducible factors defines a homeostatic response to manganese toxicity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	16
5	A three-pocket model for substrate coordination and selectivity by the nucleotide sugar transporters SLC35A1 and SLC35A2. Journal of Biological Chemistry, 2021, 297, 101069.	1.6	2
6	Targeting the Early Endosome-to-Golgi Transport of Shiga Toxins as a Therapeutic Strategy. Toxins, 2020, 12, 342.	1.5	9
7	Brain manganese and the balance between essential roles and neurotoxicity. Journal of Biological Chemistry, 2020, 295, 6312-6329.	1.6	164
8	Maintaining Translational Relevance in Animal Models of Manganese Neurotoxicity. Journal of Nutrition, 2020, 150, 1360-1369.	1.3	26
9	Generation and Validation of Tissueâ€Specific Knockout Strains for Toxicology Research. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2019, 81, e86.	1.1	0
10	Functional analyses of the UDP-galactose transporter SLC35A2 using the binding of bacterial Shiga toxins as a novel activity assay. Glycobiology, 2019, 29, 490-503.	1.3	7
11	SLC30A10 transporter in the digestive system regulates brain manganese under basal conditions while brain SLC30A10 protects against neurotoxicity. Journal of Biological Chemistry, 2019, 294, 1860-1876.	1.6	68
12	SLC30A10 Mutation Involved in Parkinsonism Results in Manganese Accumulation within Nanovesicles of the Golgi Apparatus. ACS Chemical Neuroscience, 2019, 10, 599-609.	1.7	38
13	Tamoxifen blocks retrograde trafficking of Shiga toxin 1 and 2 and protects against lethal toxicosis. Life Science Alliance, 2019, 2, e201900439.	1.3	12
14	Transporter Studies: Brain Punching Technique. Neuromethods, 2019, , 245-253.	0.2	0
15	Familial manganese-induced neurotoxicity due to mutations in SLC30A10 or SLC39A14. NeuroToxicology, 2018, 64, 278-283.	1.4	33
16	Putative metal binding site in the transmembrane domain of the manganese transporter SLC30A10 is different from that of related zinc transporters. Metallomics, 2018, 10, 1053-1064.	1.0	22
17	Deficiency in the manganese efflux transporter SLC30A10 induces severe hypothyroidism in mice. Journal of Biological Chemistry, 2017, 292, 9760-9773.	1.6	63
18	Genome-wide siRNA screen identifies UNC50 as a regulator of Shiga toxin 2 trafficking. Journal of Cell Biology, 2017, 216, 3249-3262.	2.3	29

#	Article	IF	CITATIONS
19	Inherited Disorders of Manganese Metabolism. Advances in Neurobiology, 2017, 18, 35-49.	1.3	20
20	Hypothyroidism induced by loss of the manganese efflux transporter SLC30A10 may be explained by reduced thyroxine production. Journal of Biological Chemistry, 2017, 292, 16605-16615.	1.6	46
21	Glypican-1 nanoliposomes for potentiating growth factor activity in therapeutic angiogenesis. Biomaterials, 2016, 94, 45-56.	5.7	38
22	Structural Elements in the Transmembrane and Cytoplasmic Domains of the Metal Transporter SLC30A10 Are Required for Its Manganese Efflux Activity. Journal of Biological Chemistry, 2016, 291, 15940-15957.	1.6	56
23	Syndesome Therapeutics for Enhancing Diabetic Wound Healing. Advanced Healthcare Materials, 2016, 5, 2248-2260.	3.9	35
24	Manganese homeostasis in the nervous system. Journal of Neurochemistry, 2015, 134, 601-610.	2.1	222
25	A Conserved Structural Motif Mediates Retrograde Trafficking of Shiga Toxin Types 1 and 2. Traffic, 2015, 16, 1270-1287.	1.3	23
26	Manganese-Induced Parkinsonism and Parkinson's Disease: Shared and Distinguishable Features. International Journal of Environmental Research and Public Health, 2015, 12, 7519-7540.	1.2	263
27	Age- and manganese-dependent modulation of dopaminergic phenotypes in a C. elegans DJ-1 genetic model of Parkinson's disease. Metallomics, 2015, 7, 289-298.	1.0	48
28	SLC30A10: A novel manganese transporter. Worm, 2015, 4, e1042648.	1.0	43
29	SLC30A10 Is a Cell Surface-Localized Manganese Efflux Transporter, and Parkinsonism-Causing Mutations Block Its Intracellular Trafficking and Efflux Activity. Journal of Neuroscience, 2014, 34, 14079-14095.	1.7	174
30	Retrograde trafficking of AB5 toxins: mechanisms to therapeutics. Journal of Molecular Medicine, 2013, 91, 1131-1141.	1.7	40
31	Shiga toxin–binding site for host cell receptor GPP130 reveals unexpected divergence in toxin-trafficking mechanisms. Molecular Biology of the Cell, 2013, 24, 2311-2318.	0.9	35
32	Manganese Blocks Intracellular Trafficking of Shiga Toxin and Protects Against Shiga Toxicosis. Science, 2012, 335, 332-335.	6.0	103
33	Identification of a gain-of-function mutation in a Golgi P-type ATPase that enhances Mn ²⁺ efflux and protects against toxicity. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 858-863.	3.3	78
34	Manganese-induced Trafficking and Turnover of the <i>cis</i> -Golgi Glycoprotein GPP130. Molecular Biology of the Cell, 2010, 21, 1282-1292.	0.9	57
35	Golgi dysfunction is a common feature in idiopathic human pulmonary hypertension and vascular lesions in SHIV- <i>nef</i> -infected macaques. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 297, L729-L737.	1.3	52
36	Depletion of the ATPase NSF from Golgi membranes with hypo-S-nitrosylation of vasorelevant proteins in endothelial cells exposed to monocrotaline pyrrole. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H1943-H1955.	1.5	18

#	Article	IF	CITATIONS
37	Cytoplasmic provenance of STAT3 and PY-STAT3 in the endolysosomal compartments in pulmonary arterial endothelial and smooth muscle cells: implications in pulmonary arterial hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 294, L449-L468.	1.3	25
38	Pulmonary arterial hypertension: a disease of tethers, SNAREs and SNAPs?. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H77-H85.	1.5	17
39	Live cell imaging of interleukin-6-induced targeting of "transcription factor―STAT3 to sequestering endosomes in the cytoplasm. American Journal of Physiology - Cell Physiology, 2007, 293, C1374-C1382.	2.1	46
40	Dysfunction of Golgi tethers, SNAREs, and SNAPs in monocrotaline-induced pulmonary hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 292, L1526-L1542.	1.3	35
41	Dysfunctional Intracellular Trafficking in the Pathobiology of Pulmonary Arterial Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2007, 37, 31-37.	1.4	35
42	Aberrant cytoplasmic sequestration of eNOS in endothelial cells after monocrotaline, hypoxia, and senescence: live-cell caveolar and cytoplasmic NO imaging. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H1373-H1389.	1.5	48
43	Monocrotaline pyrrole-induced megalocytosis of lung and breast epithelial cells: Disruption of plasma membrane and Golgi dynamics and an enhanced unfolded protein response. Toxicology and Applied Pharmacology, 2006, 211, 209-220.	1.3	31
44	Discordant regulatory changes in monocrotaline-induced megalocytosis of lung arterial endothelial and alveolar epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 290, L1216-L1226.	1.3	16
45	Membrane-associated STAT3 and PY-STAT3 in the Cytoplasm. Journal of Biological Chemistry, 2006, 281, 7302-7308.	1.6	67
46	Cellular mechanisms in monocrotalineâ€induced megalocytosis in pulmonary hypertension. FASEB Journal, 2006, 20, A402.	0.2	0
47	Bacterial Cell Killing Mediated by Topoisomerase I DNA Cleavage Activity. Journal of Biological Chemistry, 2005, 280, 38489-38495.	1.6	48