
Franco Salerno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4033071/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Presence and infectivity of SARS-CoV-2 virus in wastewaters and rivers. Science of the Total Environment, 2020, 744, 140911.	8.0	404
2	Urbanization and climate change impacts on surface water quality: Enhancing the resilience by reducing impervious surfaces. Water Research, 2018, 144, 491-502.	11.3	153
3	Weak precipitation, warm winters and springs impact glaciers of south slopes of Mt. Everest (central) Tj ETQq	1 1 0.78431 3.9	4 rgBT /Over
4	Multiregional Satellite Precipitation Products Evaluation over Complex Terrain. Journal of Hydrometeorology, 2016, 17, 1817-1836.	1.9	123
5	Glacial lake distribution in the Mount Everest region: Uncertainty of measurement and conditions of formation. Global and Planetary Change, 2012, 92-93, 30-39.	3.5	115
6	Multiple Carrying Capacities from a management-oriented perspective toÂoperationalize sustainable tourism in protected areas. Journal of Environmental Management, 2013, 128, 116-125.	7.8	114
7	Tracing glacier changes since the 1960s on the south slope of Mt. Everest (central Southern Himalaya) using optical satellite imagery. Cryosphere, 2014, 8, 1297-1315.	3.9	95
8	Review: Impacts of permafrost degradation on inorganic chemistry of surface fresh water. Global and Planetary Change, 2018, 162, 69-83.	3.5	91
9	Debris-covered glacier anomaly? Morphological factors controlling changes in the mass balance, surface area, terminus position, and snow line altitude of Himalayan glaciers. Earth and Planetary Science Letters, 2017, 471, 19-31.	4.4	87
10	Evaluation of GPM-era Global Satellite Precipitation Products over Multiple Complex Terrain Regions. Remote Sensing, 2019, 11, 2936.	4.0	74
11	A coupled approach of surface hydrological modelling and Wavelet Analysis for understanding the baseflow components of river discharge in karst environments. Journal of Hydrology, 2009, 376, 295-306.	5.4	64
12	Factors controlling the accelerated expansion of Imja Lake, Mount Everest region, Nepal. Annals of Glaciology, 2016, 57, 245-257.	1.4	64
13	Glacier surface-area changes in Sagarmatha national park, Nepal, in the second half of the 20th century, by comparison of historical maps. Journal of Glaciology, 2008, 54, 738-752.	2.2	63
14	Surrogate measures for providing high frequency estimates of total phosphorus concentrations in urban watersheds. Water Research, 2014, 64, 265-277.	11.3	59
15	Quantifying Debris Thickness of Debrisâ€Covered Glaciers in the Everest Region of Nepal Through Inversion of a Subdebris Melt Model. Journal of Geophysical Research F: Earth Surface, 2018, 123, 1094-1115.	2.8	59
16	Elevation-dependent warming of maximum air temperature in Nepal during 1976–2015. Atmospheric Research, 2019, 228, 261-269.	4.1	59
17	POP and PAH contamination in the southern slopes of Mt. Everest (Himalaya, Nepal): Long-range atmospheric transport, glacier shrinkage, or local impact of tourism?. Science of the Total Environment, 2016, 544, 382-390.	8.0	58
18	Future hydrological regimes and glacier cover in the Everest region: The case study of the upper Dudh Koshi basin. Science of the Total Environment, 2016, 565, 1084-1101.	8.0	55

FRANCO SALERNO

#	Article	IF	CITATIONS
19	Solid Waste and Water Quality Management Models for Sagarmatha National Park and Buffer Zone, Nepal. Mountain Research and Development, 2010, 30, 127-142.	1.0	50
20	Nitrogen removal in subsurface water by narrow buffer strips in the intensive farming landscape of the Po River watershed, Italy. Ecological Engineering, 2011, 37, 148-157.	3.6	46
21	High alpine ponds shift upwards as average temperatures increase: A case study of the Ortles–Cevedale mountain group (Southern Alps, Italy) over the last 50years. Global and Planetary Change, 2014, 120, 81-91.	3.5	46
22	Coupling high-resolution measurements to a three-dimensional lake model to assess the spatial and temporal dynamics of the cyanobacterium Planktothrix rubescens in a medium-sized lake. Hydrobiologia, 2012, 698, 77-95.	2.0	45
23	Glacier Melting Increases the Solute Concentrations of Himalayan Glacial Lakes. Environmental Science & Technology, 2016, 50, 9150-9160.	10.0	42
24	Chemical and biological response of two small lakes in the Khumbu Valley, Himalayas (Nepal) to short-term variability and climatic change as detected by long-term monitoring and paleolimnological methods. Hydrobiologia, 2010, 648, 189-205.	2.0	39
25	Influence of permafrost, rock and ice glaciers on chemistry of high-elevation ponds (NW Italian Alps). Science of the Total Environment, 2019, 685, 886-901.	8.0	39
26	Benefits from using combined dynamical-statistical downscaling approaches – lessons from a case study in the Mediterranean region. Hydrology and Earth System Sciences, 2013, 17, 705-720.	4.9	37
27	Energy, Forest, and Indoor Air Pollution Models for Sagarmatha National Park and Buffer Zone, Nepal. Mountain Research and Development, 2010, 30, 113-126.	1.0	35
28	Combined Use of Caffeine and Turbidity to Evaluate the Impact of CSOs on River Water Quality. Water, Air, and Soil Pollution, 2017, 228, 1.	2.4	33
29	Characterization of the Italian lake-types and identification of their reference sites using anthropogenic pressure factors. Journal of Limnology, 2005, 64, 75.	1.1	30
30	Lake surface area variations in the North-Eastern sector of Sagarmatha National Park (Nepal) at the end of the 20th Century by comparison of historical maps. Journal of Limnology, 2008, 67, 139.	1.1	30
31	Glacier melting and precipitation trends detected by surface area changes in Himalayan ponds. Cryosphere, 2016, 10, 1433-1448.	3.9	30
32	Experience With a Hard and Soft Participatory Modeling Framework for Social-ecological System Management in Mount Everest (Nepal) and K2 (Pakistan) Protected Areas. Mountain Research and Development, 2010, 30, 80.	1.0	29
33	Climate Change Adaptation in a Mediterranean Semi-Arid Catchment: Testing Managed Aquifer Recharge and Increased Surface Reservoir Capacity. Water (Switzerland), 2017, 9, 689.	2.7	29
34	Rainfall as primary driver of discharge and solute export from rock glaciers: The Col d'Olen Rock Glacier in the NW Italian Alps. Science of the Total Environment, 2018, 639, 316-330.	8.0	29
35	Improving Communication for Management of Social-ecological Systems in High Mountain Areas. Mountain Research and Development, 2010, 30, 69-79.	1.0	28
36	Impact of summer monsoon on the elevationâ€dependence of meteorological variables in the south of central Himalaya. International Journal of Climatology, 2018, 38, 1748-1759.	3.5	28

FRANCO SALERNO

#	Article	IF	CITATIONS
37	Mechanisms linking active rock glaciers and impounded surface water formation in highâ€mountain areas. Earth Surface Processes and Landforms, 2018, 43, 417-431.	2.5	23
38	Suspect screening of wastewaters to trace anti-COVID-19 drugs: Potential adverse effects on aquatic environment. Science of the Total Environment, 2022, 824, 153756.	8.0	23
39	Total phosphorus reference condition for subalpine lakes: A comparison among traditional methods and a new process-based watershed approach. Journal of Environmental Management, 2014, 145, 94-105.	7.8	21
40	Twenty-year sediment contamination trends in some tributaries of Lake Maggiore (Northern Italy): relation with anthropogenic factors. Environmental Science and Pollution Research, 2021, 28, 38193-38208.	5.3	21
41	High export of nitrogen and dissolved organic carbon from an Alpine glacier (Indren Glacier, NW) Tj ETQq1 1 0.7	784314 rgBT 1.5	lOverlock
42	Intensive monitoring of conventional and surrogate quality parameters in a highly urbanized river affected by multiple combined sewer overflows. Water Science and Technology: Water Supply, 2019, 19, 953-966.	2.1	20
43	No benefits from warming even for subnival vegetation in the central Himalayas. Science Bulletin, 2021, 66, 1825-1829.	9.0	20
44	Phosphorus content in a deep river sediment core as a tracer of long-term (1962–2011) anthropogenic impacts: A lesson from the Milan metropolitan area. Science of the Total Environment, 2019, 646, 37-48.	8.0	19
45	Internal wave weather heterogeneity in a deep multi-basin subalpine lake resulting from wavelet transform and numerical analysis. Advances in Water Resources, 2014, 71, 149-161.	3.8	18
46	Dynamical Drivers of the Local Wind Regime in a Himalayan Valley. Journal of Geophysical Research D: Atmospheres, 2018, 123, 13,186.	3.3	16
47	Soil properties and trace elements distribution along an altitudinal gradient on the southern slope of Mt. Everest, Nepal. Catena, 2018, 162, 61-71.	5.0	15
48	Persistent organic pollutants in sediments of high-altitude Alpine ponds within Stelvio National Park, Italian Alps. Inland Waters, 2017, 7, 34-44.	2.2	14
49	Endogenous origin of foams in lakes: a long-term analysis for Lake Maggiore (northern Italy). Hydrobiologia, 2016, 767, 249-265.	2.0	12
50	Climate change and water abstraction impacts on the long-term variability of water levels in Lake Bracciano (Central Italy): A Random Forest approach. Journal of Hydrology: Regional Studies, 2021, 37, 100880.	2.4	12
51	Adaptation Strategies for Water Resources: Criteria for Research. Water (Switzerland), 2017, 9, 805.	2.7	11
52	A Stakeholder Oriented Modelling Framework for the Early Detection of Shortage in Water Supply Systems. Water (Switzerland), 2018, 10, 762.	2.7	10
53	Summer afternoon precipitation associated with wind convergence near the Himalayan glacier fronts. Atmospheric Research, 2021, 259, 105658.	4.1	10

4

54

Restoring lakes through external phosphorus load reduction: the case of Lake Pusiano (Southern) Tj ETQq0 0 0 rgB7 lOverlock 10 Tf 50

FRANCO SALERNO

#	Article	IF	CITATIONS
55	A rock-glacier – pond system (NW Italian Alps): Soil and sediment properties, geochemistry, and trace-metal bioavailability. Catena, 2020, 194, 104700.	5.0	9
56	An Integrated Decision Support Toolbox (DST) for the Management of Mountain Protected Areas. Mountain Research and Development, 2010, 30, 94-102.	1.0	8
57	Water-quality management in a vulnerable large river: the Nile in Egypt. International Journal of River Basin Management, 2013, 11, 205-219.	2.7	8
58	Early growing-season precipitation drives radial growth of alpine juniper shrubs in the central Himalayas. Geografiska Annaler, Series A: Physical Geography, 2020, 102, 317-330.	1.5	8
59	Seasonal variations in the optical characteristics of dissolved organic matter in glacial pond water. Science of the Total Environment, 2021, 759, 143464.	8.0	8
60	Mechanism of Daytime Strong Winds on the Northern Slopes of Himalayas, near Mount Everest: Observation and Simulation. Journal of Applied Meteorology and Climatology, 2018, 57, 255-272.	1.5	7
61	Do recent meteorological drought events in central Italy result from longâ€ŧerm trend or increasing variability?. International Journal of Climatology, 2022, 42, 4111-4128.	3.5	7
62	Chemical characterization of biomass fuel particulate deposits and ashes in households of Mt. Everest region (NEPAL). Science of the Total Environment, 2016, 573, 751-759.	8.0	6
63	Climate Change Impacts on Sediment Quality of Subalpine Reservoirs: Implications on Management. Water (Switzerland), 2017, 9, 680.	2.7	5
64	Impact of Global and Local Pressures on the Ecology of a Medium-Sized Pre-Alpine Lake. Developments in Environmental Modelling, 2012, 25, 259-274.	0.3	3
65	Coupling high-resolution measurements to a three-dimensional lake model to assess the spatial and temporal dynamics of the cyanobacterium Planktothrix rubescens in a medium-sized lake. , 2012, , 77-95.		3
66	Climate–Water–Ecosystem–Interactions: Insights from Four Continent's Case Studies. Water (Switzerland), 2020, 12, 1445.	2.7	2
67	Lake Watershed Dynamics and Bathymetry Modeling of Rara and Begnas Lakes in Nepal. Earth, 2021, 2, 272-286.	2.2	1
68	Factors Controlling the Hydraulic Efficiency of Green Roofs in the Metropolitan Area of Milan (Italy). Sustainability, 2021, 13, 13638.	3.2	0