Xiaodong Xu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4033048/xiaodong-xu-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

150	24,627	61	156
papers	citations	h-index	g-index
159 ext. papers	31,430 ext. citations	15.9 avg, IF	7.22 L-index

#	Paper	IF	Citations
150	The study of displacement damage in AlGaN/GaN high electron mobility transistors based on experiment and simulation method. <i>IEEE Transactions on Nuclear Science</i> , 2022 , 1-1	1.7	1
149	Reversible strain-induced magnetic phase transition in a van der Waals magnet <i>Nature Nanotechnology</i> , 2022 ,	28.7	9
148	First-Principles Calculations for the Impact of Hydrogenation on the Electron Behavior and Stability of Borophene Nanosheets: Implications for Boron 2D Electronics. <i>ACS Applied Nano Materials</i> , 2022 , 5, 1419-1425	5.6	1
147	Nano-spectroscopy of excitons in atomically thin transition metal dichalcogenides <i>Nature Communications</i> , 2022 , 13, 542	17.4	3
146	Long-range transport of 2D excitons with acoustic waves <i>Nature Communications</i> , 2022 , 13, 1334	17.4	3
145	Electric control of a canted-antiferromagnetic Chern insulator <i>Nature Communications</i> , 2022 , 13, 1668	17.4	4
144	The Potential of Phosphorus Nitride Monolayer for Liß Battery from the Anchoring and Diffusing Perspective: A First-Principles Study. <i>Advanced Theory and Simulations</i> , 2022 , 5, 2100305	3.5	O
143	Evidence for equilibrium exciton condensation in monolayer WTe2. <i>Nature Physics</i> , 2022 , 18, 94-99	16.2	4
142	Light-induced ferromagnetism in moir uperlattices <i>Nature</i> , 2022 , 604, 468-473	50.4	5
141	Phase engineering of Cr5Te8 with colossal anomalous Hall effect. <i>Nature Electronics</i> , 2022 , 5, 224-232	28.4	10
140	Spin photovoltaic effect in magnetic van der Waals heterostructures. <i>Science Advances</i> , 2021 , 7, eabg80	9144.3	O
139	Determination of the Spin Axis in Quantum Spin Hall Insulator Candidate Monolayer WTe2. <i>Physical Review X</i> , 2021 , 11,	9.1	2
138	Excitons and emergent quantum phenomena in stacked 2D semiconductors. <i>Nature</i> , 2021 , 599, 383-392	50.4	24
137	Direct visualization of magnetic domains and moir[magnetism in twisted 2D magnets. <i>Science</i> , 2021 , 374, 1140-1144	33.3	21
136	Unraveling Strain Gradient Induced Electromechanical Coupling in Twisted Double Bilayer Graphene Moir (Superlattices. <i>Advanced Materials</i> , 2021 , 33, e2105879	24	7
135	Magnetism and Its Structural Coupling Effects in 2D Ising Ferromagnetic Insulator VI. <i>Nano Letters</i> , 2021 , 21, 9180-9186	11.5	7
134	Imaging Graphene Moir Superlattices via Scanning Kelvin Probe Microscopy. <i>Nano Letters</i> , 2021 , 21, 3280-3286	11.5	3

(2021-2021)

133	Magnetic domains and domain wall pinning in atomically thin CrBr revealed by nanoscale imaging. <i>Nature Communications</i> , 2021 , 12, 1989	17.4	20
132	Intertwined Topological and Magnetic Orders in Atomically Thin Chern Insulator MnBiTe. <i>Nano Letters</i> , 2021 , 21, 2544-2550	11.5	26
131	Van der Waals epitaxial growth of air-stable CrSe nanosheets with thickness-tunable magnetic order. <i>Nature Materials</i> , 2021 , 20, 818-825	27	68
130	Highly anisotropic excitons and multiple phonon bound states in a van der Waals antiferromagnetic insulator. <i>Nature Nanotechnology</i> , 2021 , 16, 655-660	28.7	18
129	Magnetic Order and Symmetry in the 2D Semiconductor CrSBr. <i>Nano Letters</i> , 2021 , 21, 3511-3517	11.5	27
128	Giant Out-of-Plane Second Harmonic Generation Susceptibility in Janus Group III Chalcogenide Monolayers. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 11285-11293	3.8	4
127	Quantum oscillations in the field-induced ferromagnetic state of MnBi2\(\mathbb{B}\)SbxTe4. <i>Physical Review B</i> , 2021 , 103,	3.3	3
126	Observation of Single-Electron Transport and Charging on Individual Point Defects in Atomically Thin WSe2. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 14056-14064	3.8	O
125	Effect of Hydrogen on Radiation-Induced Displacement Damage in AlGaN/GaN HEMTs. <i>IEEE Transactions on Nuclear Science</i> , 2021 , 68, 1258-1264	1.7	3
124	Interlayer electronic coupling on demand in a 2D magnetic semiconductor. <i>Nature Materials</i> , 2021 , 20, 1657-1662	27	12
123	Direct observation of two-dimensional magnons in atomically thin CrI3. <i>Nature Physics</i> , 2021 , 17, 20-25	16.2	49
122	Electrically tunable correlated and topological states in twisted monolayerBilayer graphene. Nature Physics, 2021, 17, 374-380	16.2	64
121	Graphene-based monoatomic chain spintronics: contact-derived half-metallicity, sp2 vs sp. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2021 , 126, 114486	3	
120	Nanocavity Clock Spectroscopy: Resolving Competing Exciton Dynamics in WSe/MoSe Heterobilayers. <i>Nano Letters</i> , 2021 , 21, 522-528	11.5	4
119	Symmetry breaking in twisted double bilayer graphene. <i>Nature Physics</i> , 2021 , 17, 26-30	16.2	69
118	Intrinsic donor-bound excitons in ultraclean monolayer semiconductors. <i>Nature Communications</i> , 2021 , 12, 871	17.4	10
117	Defect-Induced Magnetic Skyrmion in a Two-Dimensional Chromium Triiodide Monolayer. <i>Jacs Au</i> , 2021 , 1, 1362-1367		4
116	Observation of Giant Optical Linear Dichroism in a Zigzag Antiferromagnet FePS. <i>Nano Letters</i> , 2021 , 21, 6938-6945	11.5	6

115	Competing correlated states and abundant orbital magnetism in twisted monolayer-bilayer graphene. <i>Nature Communications</i> , 2021 , 12, 4727	17.4	5
114	Even-Odd Layer-Dependent Anomalous Hall Effect in Topological Magnet MnBiTe Thin Films. <i>Nano Letters</i> , 2021 , 21, 7691-7698	11.5	8
113	Terahertz response of monolayer and few-layer WTe at the nanoscale. <i>Nature Communications</i> , 2021 , 12, 5594	17.4	8
112	Moir[trions in MoSe/WSe heterobilayers. <i>Nature Nanotechnology</i> , 2021 , 16, 1208-1213	28.7	13
111	Giant and anisotropic second harmonic generation of VV binary phosphorene derivative with permanent dipole. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 6544-6552	7.1	4
110	Unveiling 2D Ferroelectricity and Ferromagnetism Interaction in van der Waals Heterobilayers. Journal of Physical Chemistry C, 2021 , 125, 27837-27843	3.8	1
109	Stacking Domain Wall Magnons in Twisted van der Waals Magnets. <i>Physical Review Letters</i> , 2020 , 125, 247201	7.4	13
108	Metasurface Integrated Monolayer Exciton Polariton. <i>Nano Letters</i> , 2020 , 20, 5292-5300	11.5	16
107	Long Radiation Lifetime and Quasi-Isotropic Excitons in Antioxidant VIV Binary Phosphorene Allotropes with Intrinsic Dipole. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 14787-14796	3.8	2
106	Separation of the valley exciton-polariton in two-dimensional semiconductors with an anisotropic photonic crystal. <i>Physical Review B</i> , 2020 , 101,	3.3	3
106		3.3	
	photonic crystal. <i>Physical Review B</i> , 2020 , 101,		
105	photonic crystal. <i>Physical Review B</i> , 2020 , 101, Monolayer Semiconductor Auger Detector. <i>Nano Letters</i> , 2020 , 20, 5538-5543 Magnetic proximity and nonreciprocal current switching in a monolayer WTe helical edge. <i>Nature</i>	11.5	2
105	photonic crystal. <i>Physical Review B</i> , 2020 , 101, Monolayer Semiconductor Auger Detector. <i>Nano Letters</i> , 2020 , 20, 5538-5543 Magnetic proximity and nonreciprocal current switching in a monolayer WTe helical edge. <i>Nature Materials</i> , 2020 , 19, 503-507 Two-Dimensional van der Waals Nanoplatelets with Robust Ferromagnetism. <i>Nano Letters</i> , 2020 ,	11.5 27	2 32 10
105	photonic crystal. <i>Physical Review B</i> , 2020 , 101, Monolayer Semiconductor Auger Detector. <i>Nano Letters</i> , 2020 , 20, 5538-5543 Magnetic proximity and nonreciprocal current switching in a monolayer WTe helical edge. <i>Nature Materials</i> , 2020 , 19, 503-507 Two-Dimensional van der Waals Nanoplatelets with Robust Ferromagnetism. <i>Nano Letters</i> , 2020 , 20, 2100-2106 Layer-resolved magnetic proximity effect in van der Waals heterostructures. <i>Nature</i>	11.5 27 11.5	2 32 10 66
105 104 103	Monolayer Semiconductor Auger Detector. <i>Nano Letters</i> , 2020 , 20, 5538-5543 Magnetic proximity and nonreciprocal current switching in a monolayer WTe helical edge. <i>Nature Materials</i> , 2020 , 19, 503-507 Two-Dimensional van der Waals Nanoplatelets with Robust Ferromagnetism. <i>Nano Letters</i> , 2020 , 20, 2100-2106 Layer-resolved magnetic proximity effect in van der Waals heterostructures. <i>Nature Nanotechnology</i> , 2020 , 15, 187-191 Valley phonons and exciton complexes in a monolayer semiconductor. <i>Nature Communications</i> ,	11.5 27 11.5 28.7	2 32 10 66 55
105 104 103 102	Monolayer Semiconductor Auger Detector. <i>Nano Letters</i> , 2020 , 20, 5538-5543 Magnetic proximity and nonreciprocal current switching in a monolayer WTe helical edge. <i>Nature Materials</i> , 2020 , 19, 503-507 Two-Dimensional van der Waals Nanoplatelets with Robust Ferromagnetism. <i>Nano Letters</i> , 2020 , 20, 2100-2106 Layer-resolved magnetic proximity effect in van der Waals heterostructures. <i>Nature Nanotechnology</i> , 2020 , 15, 187-191 Valley phonons and exciton complexes in a monolayer semiconductor. <i>Nature Communications</i> , 2020 , 11, 618 Tuning inelastic light scattering via symmetry control in the two-dimensional magnet Crl. <i>Nature</i>	11.5 27 11.5 28.7	2 32 10 66 55

97	Superconductivity in metallic twisted bilayer graphene stabilized by WSe. <i>Nature</i> , 2020 , 583, 379-384	50.4	101
96	Layered Antiferromagnetism Induces Large Negative Magnetoresistance in the van der Waals Semiconductor CrSBr. <i>Advanced Materials</i> , 2020 , 32, e2003240	24	30
95	PN/PAs-WSe van der Waals heterostructures for solar cell and photodetector. <i>Scientific Reports</i> , 2020 , 10, 17213	4.9	4
94	Modulation of the electronic band structure of silicene by polar two-dimensional substrates. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 21412-21420	3.6	6
93	Emergent phenomena and proximity effects in two-dimensional magnets and heterostructures. <i>Nature Materials</i> , 2020 , 19, 1276-1289	27	8o
92	Voltage Control of a van der Waals Spin-Filter Magnetic Tunnel Junction. <i>Nano Letters</i> , 2019 , 19, 915-9	20 1.5	80
91	Second harmonic generation in Janus MoSSe a monolayer and stacked bulk with vertical asymmetry. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 21022-21029	3.6	19
90	Optical generation of high carrier densities in 2D semiconductor heterobilayers. <i>Science Advances</i> , 2019 , 5, eaax0145	14.3	40
89	Virtual Trions in the Photoluminescence of Monolayer Transition-Metal Dichalcogenides. <i>Physical Review Letters</i> , 2019 , 122, 217401	7.4	16
88	Atomically Thin CrCl: An In-Plane Layered Antiferromagnetic Insulator. <i>Nano Letters</i> , 2019 , 19, 3993-39	98 1.5	120
87	Strong spin-orbit coupling and Dirac nodal lines in the three-dimensional electronic structure of metallic rutile IrO2. <i>Physical Review B</i> , 2019 , 99,	3.3	11
86	Anisotropic structural dynamics of monolayer crystals revealed by femtosecond surface X-ray scattering. <i>Nature Photonics</i> , 2019 , 13, 425-430	33.9	19
85	Ferromagnetism Near Room Temperature in the Cleavable van der Waals Crystal FeGeTe. <i>ACS Nano</i> , 2019 , 13, 4436-4442	16.7	119
84	Chiral heteronanotubes: arrangement-dominated chiral interface states and conductivities. <i>Nanoscale</i> , 2019 , 11, 8699-8705	7.7	5
83	Imaging quantum spin Hall edges in monolayer WTe. Science Advances, 2019, 5, eaat8799	14.3	64
82	Visualizing electrostatic gating effects in two-dimensional heterostructures. <i>Nature</i> , 2019 , 572, 220-22	3 50.4	71
81	Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer Cri. Nature, 2019,	50.4	172
	572, 497-501	50.4	

79	Spiral Graphene Nanoribbons with Azulene Defects as Potential Nonlinear Optical Materials. <i>ACS Applied Nano Materials</i> , 2019 , 2, 1648-1654	5.6	13
78	Signatures of moirtrapped valley excitons in MoSe/WSe heterobilayers. <i>Nature</i> , 2019 , 567, 66-70	50.4	486
77	Direct observation of van der Waals stacking-dependent interlayer magnetism. Science, 2019, 366, 983-	987 .3	198
76	Electrical control of 2D magnetism in bilayer Crl. Nature Nanotechnology, 2018, 13, 544-548	28.7	626
75	Encapsulated Silicon Nitride Nanobeam Cavity for Hybrid Nanophotonics. ACS Photonics, 2018, 5, 2176-	26.81	23
74	Double-helix PLi chains: novel potential nonlinear optical materials. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 12618-12623	3.6	8
73	Tuning Ising superconductivity with layer and spin-orbit coupling in two-dimensional transition-metal dichalcogenides. <i>Nature Communications</i> , 2018 , 9, 1427	17.4	124
7 2	Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. <i>Science</i> , 2018 , 360, 1214-1218	33.3	555
71	Modulating the molecular third-order optical nonlinearity by curved surface of carbon skeleton. <i>Molecular Physics</i> , 2018 , 116, 242-250	1.7	
70	Ferroelectric switching of a two-dimensional metal. <i>Nature</i> , 2018 , 560, 336-339	50.4	280
70 69	Ferroelectric switching of a two-dimensional metal. <i>Nature</i> , 2018 , 560, 336-339 Two-dimensional itinerant ferromagnetism in atomically thin FeGeTe. <i>Nature Materials</i> , 2018 , 17, 778-7		280
			522
69	Two-dimensional itinerant ferromagnetism in atomically thin FeGeTe. <i>Nature Materials</i> , 2018 , 17, 778-7 Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. <i>Nature</i>	8 2 7	522
69 68	Two-dimensional itinerant ferromagnetism in atomically thin FeGeTe. <i>Nature Materials</i> , 2018 , 17, 778-7 Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. <i>Nature Nanotechnology</i> , 2018 , 13, 1004-1015 Single-Crystalline Nanobelts Composed of Transition Metal Ditellurides. <i>Advanced Materials</i> , 2018 ,	82 ₇	522
69 68 67	Two-dimensional itinerant ferromagnetism in atomically thin FeGeTe. <i>Nature Materials</i> , 2018 , 17, 778-7 Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. <i>Nature Nanotechnology</i> , 2018 , 13, 1004-1015 Single-Crystalline Nanobelts Composed of Transition Metal Ditellurides. <i>Advanced Materials</i> , 2018 , 30, e1707260 Observation of topological surface states and strong electron/hole imbalance in extreme	82 7 28.7	522 218 15
69 68 67 66	Two-dimensional itinerant ferromagnetism in atomically thin FeGeTe. <i>Nature Materials</i> , 2018 , 17, 778-7 Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. <i>Nature Nanotechnology</i> , 2018 , 13, 1004-1015 Single-Crystalline Nanobelts Composed of Transition Metal Ditellurides. <i>Advanced Materials</i> , 2018 , 30, e1707260 Observation of topological surface states and strong electron/hole imbalance in extreme magnetoresistance compound LaBi. <i>Physical Review Materials</i> , 2018 , 2, Evolution of electronic structure and electron-phonon coupling in ultrathin tetragonal CoSe films.	28.7 24 3.2	522218157
69 68 67 66 65	Two-dimensional itinerant ferromagnetism in atomically thin FeGeTe. <i>Nature Materials</i> , 2018 , 17, 778-7 Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. <i>Nature Nanotechnology</i> , 2018 , 13, 1004-1015 Single-Crystalline Nanobelts Composed of Transition Metal Ditellurides. <i>Advanced Materials</i> , 2018 , 30, e1707260 Observation of topological surface states and strong electron/hole imbalance in extreme magnetoresistance compound LaBi. <i>Physical Review Materials</i> , 2018 , 2, Evolution of electronic structure and electron-phonon coupling in ultrathin tetragonal CoSe films. <i>Physical Review Materials</i> , 2018 , 2,	827 28.7 24 3.2 3.2	522 218 15 7

(2017-2018)

61	Experimental observation of conductive edge states in weak topological insulator candidate HfTe5. <i>APL Materials</i> , 2018 , 6, 121111	5.7	13
60	Ultrathin van der Waals Metalenses. <i>Nano Letters</i> , 2018 , 18, 6961-6966	11.5	36
59	Gate-induced superconductivity in a monolayer topological insulator. <i>Science</i> , 2018 , 362, 922-925	33.3	143
58	Unusual Exciton-Phonon Interactions at van der Waals Engineered Interfaces. <i>Nano Letters</i> , 2017 , 17, 1194-1199	11.5	63
57	Many-body effects in nonlinear optical responses of 2D layered semiconductors. <i>2D Materials</i> , 2017 , 4, 025024	5.9	28
56	Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures. <i>Science Advances</i> , 2017 , 3, e1601832	14.3	208
55	Edge conduction in monolayer WTe2. <i>Nature Physics</i> , 2017 , 13, 677-682	16.2	320
54	Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. <i>Nature</i> , 2017 , 546, 270-273	50.4	2210
53	Mechanism of mechanically induced optoelectronic and spintronic phase transitions in 1D graphene spirals: insight into the role of interlayer coupling. <i>Nanoscale</i> , 2017 , 9, 9693-9700	7.7	8
52	Dirac line nodes and effect of spin-orbit coupling in the nonsymmorphic critical semimetals MSiS(M=Hf,Zr). <i>Physical Review B</i> , 2017 , 95,	3.3	93
51	All-angle Negative Reflection with An Ultrathin Acoustic Gradient Metasurface: Floquet-Bloch Modes Perspective and Experimental Verification. <i>Scientific Reports</i> , 2017 , 7, 13852	4.9	15
50	Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. <i>Science Advances</i> , 2017 , 3, e1603113	14.3	419
49	Experimental realization of all-angle negative refraction in acoustic gradient metasurface. <i>Applied Physics Letters</i> , 2017 , 111, 221602	3.4	35
48	Phonon-assisted oscillatory exciton dynamics in monolayer MoSe2. <i>Npj 2D Materials and Applications</i> , 2017 , 1,	8.8	37
47	Dynamic Optical Tuning of Interlayer Interactions in the Transition Metal Dichalcogenides. <i>Nano Letters</i> , 2017 , 17, 7761-7766	11.5	29
46	Moirlexcitons: From programmable quantum emitter arrays to spin-orbit-coupled artificial lattices. <i>Science Advances</i> , 2017 , 3, e1701696	14.3	247
45	Topological mosaics in moir uperlattices of van der Waals heterobilayers. <i>Nature Physics</i> , 2017 , 13, 356-362	16.2	131
44	Spatial manipulating spin-polarization and tunneling patterns in graphene spirals via periphery structural modification. <i>Carbon</i> , 2017 , 113, 325-333	10.4	10

43	Magnetic behavior and spin-lattice coupling in cleavable van der Waals layered CrCl3 crystals. <i>Physical Review Materials</i> , 2017 , 1,	3.2	141
42	Exciton Dynamics in Monolayer Transition Metal Dichalcogenides. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2016 , 33, C39-C49	1.7	101
41	Multiple hot-carrier collection in photo-excited graphene Moir uperlattices. <i>Science Advances</i> , 2016 , 2, e1600002	14.3	28
40	Trion formation dynamics in monolayer transition metal dichalcogenides. <i>Physical Review B</i> , 2016 , 93,	3.3	127
39	Valleytronics in 2D materials. <i>Nature Reviews Materials</i> , 2016 , 1,	73.3	1045
38	Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. <i>Nature Communications</i> , 2016 , 7, 12357	7 17.4	355
37	Theoretical study of electron tunneling through the spiral molecule junctions along spiral paths. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 3765-71	3.6	8
36	Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. <i>Science</i> , 2016 , 351, 688-91	33.3	451
35	Strong Circularly Polarized Photoluminescence from Multilayer MoS2 Through Plasma Driven Direct-Gap Transition. <i>ACS Photonics</i> , 2016 , 3, 310-314	6.3	9
34	Excitonic luminescence upconversion in a two-dimensional semiconductor. <i>Nature Physics</i> , 2016 , 12, 32	3 -32.7	135
33	Photo-Nernst current in graphene. <i>Nature Physics</i> , 2016 , 12, 236-239	16.2	15
32	Evolution of the Valley Position in Bulk Transition-Metal Chalcogenides and Their Monolayer Limit. <i>Nano Letters</i> , 2016 , 16, 4738-45	11.5	56
31	Implementation of Outstanding Electronic Transport in Polar Covalent Boron Nitride Atomic Chains: another Extraordinary Odd-Even Behaviour. <i>Scientific Reports</i> , 2016 , 6, 26389	4.9	9
30	Directional interlayer spin-valley transfer in two-dimensional heterostructures. <i>Nature Communications</i> , 2016 , 7, 13747	17.4	80
29	Hybrid Tip-Enhanced Nanospectroscopy and Nanoimaging of Monolayer WSe2 with Local Strain Control. <i>Nano Letters</i> , 2016 , 16, 2621-7	11.5	123
28	Probing the Influence of Dielectric Environment on Excitons in Monolayer WSe: Insight from High Magnetic Fields. <i>Nano Letters</i> , 2016 , 16, 7054-7060	11.5	148
27	Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures. <i>Nature Communications</i> , 2015 , 6, 6242	17.4	896
26	Population pulsation resonances of excitons in monolayer MoSe2 with sub-1 BV linewidths. <i>Physical Review Letters</i> , 2015 , 114, 137402	7.4	20

(2014-2015)

25	Highly anisotropic and robust excitons in monolayer black phosphorus. <i>Nature Nanotechnology</i> , 2015 , 10, 517-21	28.7	999
24	Electrical control of second-harmonic generation in a WSe2 monolayer transistor. <i>Nature Nanotechnology</i> , 2015 , 10, 407-11	28.7	300
23	Single quantum emitters in monolayer semiconductors. <i>Nature Nanotechnology</i> , 2015 , 10, 497-502	28.7	556
22	Monolayer semiconductor nanocavity lasers with ultralow thresholds. <i>Nature</i> , 2015 , 520, 69-72	50.4	545
21	Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides. <i>Nature Communications</i> , 2015 , 6, 8315	17.4	309
20	Anomalous Light Cones and Valley Optical Selection Rules of Interlayer Excitons in Twisted Heterobilayers. <i>Physical Review Letters</i> , 2015 , 115, 187002	7.4	142
19	Spinlayer locking effects in optical orientation of exciton spin in bilayer WSe2. <i>Nature Physics</i> , 2014 , 10, 130-134	16.2	243
18	Introduction to the issue on graphene optoelectronics. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2014 , 20, 6-8	3.8	3
17	Spin and pseudospins in layered transition metal dichalcogenides. <i>Nature Physics</i> , 2014 , 10, 343-350	16.2	1733
16	Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. <i>Nature Nanotechnology</i> , 2014 , 9, 268-72	28.7	1202
15	Coherent Electronic Coupling in Atomically Thin MoSe2. Physical Review Letters, 2014, 112,	7.4	88
15 14	Coherent Electronic Coupling in Atomically Thin MoSe2. <i>Physical Review Letters</i> , 2014 , 112, Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. <i>Nature Materials</i> , 2014 , 13, 10		
14	Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. <i>Nature Materials</i> , 2014 , 13, 10 Nonlinear valley and spin currents from Fermi pocket anisotropy in 2D crystals. <i>Physical Review</i>)96 <i>=</i> 101	732
14	Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. <i>Nature Materials</i> , 2014 , 13, 10 Nonlinear valley and spin currents from Fermi pocket anisotropy in 2D crystals. <i>Physical Review Letters</i> , 2014 , 113, 156603 Spin-orbit-coupled quantum wires and Majorana fermions on zigzag edges of monolayer	096 7 101 7∙4	73 ²
14 13	Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. <i>Nature Materials</i> , 2014 , 13, 10 Nonlinear valley and spin currents from Fermi pocket anisotropy in 2D crystals. <i>Physical Review Letters</i> , 2014 , 113, 156603 Spin-orbit-coupled quantum wires and Majorana fermions on zigzag edges of monolayer transition-metal dichalcogenides. <i>Physical Review B</i> , 2014 , 89, Theory of low-power ultra-broadband terahertz sideband generation in bi-layer graphene. <i>Nature</i>	096 7 101 7·4 3·3	73 ² 64 54
14 13 12	Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. <i>Nature Materials</i> , 2014 , 13, 10 Nonlinear valley and spin currents from Fermi pocket anisotropy in 2D crystals. <i>Physical Review Letters</i> , 2014 , 113, 156603 Spin-orbit-coupled quantum wires and Majorana fermions on zigzag edges of monolayer transition-metal dichalcogenides. <i>Physical Review B</i> , 2014 , 89, Theory of low-power ultra-broadband terahertz sideband generation in bi-layer graphene. <i>Nature Communications</i> , 2014 , 5, 4854 Valley-splitting and valley-dependent inter-Landau-level optical transitions in monolayer MoS2	7·4 3·3	73 ² 64 54 20

7	Vapor-transport growth of high optical quality WSe2 monolayers a. <i>APL Materials</i> , 2014 , 2, 101101 5.7		48
6	Zeeman-type spin splitting controlled by an electric field. <i>Nature Physics</i> , 2013 , 9, 563-569	2	368
5	Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2. <i>Nature Physics</i> , 2013 , 9, 149-153	2	451
4	Chemical doping for threshold control and contact resistance reduction in graphene and MoS2 field effect transistors 2013 ,		2
3	Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Physical Review Letters, 2012 , 108, 196802		2994
2	Giant Shift Photovoltaic Current in Group V-V Binary Nanosheets. Advanced Theory and Simulations,21004.73	2	0
1	Phase-pure two-dimensional FexGeTe2 magnets with near-room-temperature TC. Nano Research,1 10		4