Xiaodong Xu

List of Publications by Citations

Source: https://exaly.com/author-pdf/4033048/xiaodong-xu-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

61 24,627 156 150 h-index g-index citations papers 159 31,430 15.9 7.22 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
150	Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. <i>Physical Review Letters</i> , 2012 , 108, 196802	7.4	2994
149	Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. <i>Nature</i> , 2017 , 546, 270-273	50.4	2210
148	Spin and pseudospins in layered transition metal dichalcogenides. <i>Nature Physics</i> , 2014 , 10, 343-350	16.2	1733
147	Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. <i>Nature Nanotechnology</i> , 2014 , 9, 268-72	28.7	1202
146	Valleytronics in 2D materials. <i>Nature Reviews Materials</i> , 2016 , 1,	73.3	1045
145	Highly anisotropic and robust excitons in monolayer black phosphorus. <i>Nature Nanotechnology</i> , 2015 , 10, 517-21	28.7	999
144	Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures. <i>Nature Communications</i> , 2015 , 6, 6242	17.4	896
143	Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. <i>Nature Materials</i> , 2014 , 13, 10	96 / 101	732
142	Electrical control of 2D magnetism in bilayer Crl. <i>Nature Nanotechnology</i> , 2018 , 13, 544-548	28.7	626
141	Single quantum emitters in monolayer semiconductors. <i>Nature Nanotechnology</i> , 2015 , 10, 497-502	28.7	556
140	Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. <i>Science</i> , 2018 , 360, 1214-1218	33.3	555
139	Monolayer semiconductor nanocavity lasers with ultralow thresholds. <i>Nature</i> , 2015 , 520, 69-72	50.4	545
138	Two-dimensional itinerant ferromagnetism in atomically thin FeGeTe. <i>Nature Materials</i> , 2018 , 17, 778-7	8 2 7	522
137	Signatures of moirtrapped valley excitons in MoSe/WSe heterobilayers. <i>Nature</i> , 2019 , 567, 66-70	50.4	486
136	Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. <i>Science</i> , 2016 , 351, 688-91	33.3	451
135	Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2. <i>Nature Physics</i> , 2013 , 9, 149-153	16.2	451
134	Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. <i>Science Advances</i> , 2017 , 3, e1603113	14.3	419

133	Zeeman-type spin splitting controlled by an electric field. <i>Nature Physics</i> , 2013 , 9, 563-569	16.2	368
132	Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. <i>Nature Communications</i> , 2016 , 7, 1235	7 17.4	355
131	Edge conduction in monolayer WTe2. <i>Nature Physics</i> , 2017 , 13, 677-682	16.2	320
130	Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides. <i>Nature Communications</i> , 2015 , 6, 8315	17.4	309
129	Electrical control of second-harmonic generation in a WSe2 monolayer transistor. <i>Nature Nanotechnology</i> , 2015 , 10, 407-11	28.7	300
128	Ferroelectric switching of a two-dimensional metal. <i>Nature</i> , 2018 , 560, 336-339	50.4	2 80
127	Stacking-Dependent Magnetism in Bilayer CrI. <i>Nano Letters</i> , 2018 , 18, 7658-7664	11.5	270
126	Moirlexcitons: From programmable quantum emitter arrays to spin-orbit-coupled artificial lattices. <i>Science Advances</i> , 2017 , 3, e1701696	14.3	247
125	SpinDayer locking effects in optical orientation of exciton spin in bilayer WSe2. <i>Nature Physics</i> , 2014 , 10, 130-134	16.2	243
124	Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. <i>Nature Nanotechnology</i> , 2018 , 13, 1004-1015	28.7	218
123	Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures. <i>Science Advances</i> , 2017 , 3, e1601832	14.3	208
122	Direct observation of van der Waals stacking-dependent interlayer magnetism. <i>Science</i> , 2019 , 366, 983-	· 98 7.3	198
121	Dirac cones and Dirac saddle points of bright excitons in monolayer transition metal dichalcogenides. <i>Nature Communications</i> , 2014 , 5, 3876	17.4	196
120	Switching 2D magnetic states via pressure tuning of layer stacking. <i>Nature Materials</i> , 2019 , 18, 1298-13	0 2 7	194
119	Ligand-field helical luminescence in a 2D ferromagnetic insulator. <i>Nature Physics</i> , 2018 , 14, 277-281	16.2	192
118	Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer Crl. <i>Nature</i> , 2019 , 572, 497-501	50.4	172
117	Probing the Influence of Dielectric Environment on Excitons in Monolayer WSe: Insight from High Magnetic Fields. <i>Nano Letters</i> , 2016 , 16, 7054-7060	11.5	148
116	Gate-induced superconductivity in a monolayer topological insulator. <i>Science</i> , 2018 , 362, 922-925	33.3	143

115	Anomalous Light Cones and Valley Optical Selection Rules of Interlayer Excitons in Twisted Heterobilayers. <i>Physical Review Letters</i> , 2015 , 115, 187002	7.4	142
114	Magnetic behavior and spin-lattice coupling in cleavable van der Waals layered CrCl3 crystals. <i>Physical Review Materials</i> , 2017 , 1,	3.2	141
113	Excitonic luminescence upconversion in a two-dimensional semiconductor. <i>Nature Physics</i> , 2016 , 12, 32	3±362 <i>1</i> 7	135
112	Topological mosaics in moir uperlattices of van der Waals heterobilayers. <i>Nature Physics</i> , 2017 , 13, 356-362	16.2	131
111	Trion formation dynamics in monolayer transition metal dichalcogenides. <i>Physical Review B</i> , 2016 , 93,	3.3	127
110	Tuning Ising superconductivity with layer and spin-orbit coupling in two-dimensional transition-metal dichalcogenides. <i>Nature Communications</i> , 2018 , 9, 1427	17.4	124
109	Hybrid Tip-Enhanced Nanospectroscopy and Nanoimaging of Monolayer WSe2 with Local Strain Control. <i>Nano Letters</i> , 2016 , 16, 2621-7	11.5	123
108	Atomically Thin CrCl: An In-Plane Layered Antiferromagnetic Insulator. <i>Nano Letters</i> , 2019 , 19, 3993-39	981.5	120
107	Ferromagnetism Near Room Temperature in the Cleavable van der Waals Crystal FeGeTe. <i>ACS Nano</i> , 2019 , 13, 4436-4442	16.7	119
106	Radiative control of dark excitons at room temperature by nano-optical antenna-tip Purcell effect. <i>Nature Nanotechnology</i> , 2018 , 13, 59-64	28.7	113
105	Exciton Dynamics in Monolayer Transition Metal Dichalcogenides. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2016 , 33, C39-C49	1.7	101
104	Superconductivity in metallic twisted bilayer graphene stabilized by WSe. <i>Nature</i> , 2020 , 583, 379-384	50.4	101
103	Dirac line nodes and effect of spin-orbit coupling in the nonsymmorphic critical semimetals MSiS(M=Hf,Zr). <i>Physical Review B</i> , 2017 , 95,	3.3	93
102	Coherent Electronic Coupling in Atomically Thin MoSe2. <i>Physical Review Letters</i> , 2014 , 112,	7.4	88
101	Voltage Control of a van der Waals Spin-Filter Magnetic Tunnel Junction. <i>Nano Letters</i> , 2019 , 19, 915-93	201.5	80
100	Emergent phenomena and proximity effects in two-dimensional magnets and heterostructures. <i>Nature Materials</i> , 2020 , 19, 1276-1289	27	80
99	Directional interlayer spin-valley transfer in two-dimensional heterostructures. <i>Nature Communications</i> , 2016 , 7, 13747	17.4	8o
98	Excitons in strain-induced one-dimensional moir potentials at transition metal dichalcogenide heterojunctions. <i>Nature Materials</i> , 2020 , 19, 1068-1073	27	79

97	Visualizing electrostatic gating effects in two-dimensional heterostructures. <i>Nature</i> , 2019 , 572, 220-223	350.4	71
96	Symmetry breaking in twisted double bilayer graphene. <i>Nature Physics</i> , 2021 , 17, 26-30	16.2	69
95	Van der Waals epitaxial growth of air-stable CrSe nanosheets with thickness-tunable magnetic order. <i>Nature Materials</i> , 2021 , 20, 818-825	27	68
94	Layer-resolved magnetic proximity effect in van der Waals heterostructures. <i>Nature Nanotechnology</i> , 2020 , 15, 187-191	28.7	66
93	Imaging quantum spin Hall edges in monolayer WTe. Science Advances, 2019, 5, eaat8799	14.3	64
92	Nonlinear valley and spin currents from Fermi pocket anisotropy in 2D crystals. <i>Physical Review Letters</i> , 2014 , 113, 156603	7.4	64
91	Electrically tunable correlated and topological states in twisted monolayerBilayer graphene. <i>Nature Physics</i> , 2021 , 17, 374-380	16.2	64
90	Unusual Exciton-Phonon Interactions at van der Waals Engineered Interfaces. <i>Nano Letters</i> , 2017 , 17, 1194-1199	11.5	63
89	Valley-splitting and valley-dependent inter-Landau-level optical transitions in monolayer MoS2 quantum Hall systems. <i>Physical Review B</i> , 2014 , 90,	3.3	60
88	Evolution of the Valley Position in Bulk Transition-Metal Chalcogenides and Their Monolayer Limit. <i>Nano Letters</i> , 2016 , 16, 4738-45	11.5	56
87	Valley phonons and exciton complexes in a monolayer semiconductor. <i>Nature Communications</i> , 2020 , 11, 618	17.4	55
86	Spin-orbit-coupled quantum wires and Majorana fermions on zigzag edges of monolayer transition-metal dichalcogenides. <i>Physical Review B</i> , 2014 , 89,	3.3	54
85	Tuning inelastic light scattering via symmetry control in the two-dimensional magnet CrI. <i>Nature Nanotechnology</i> , 2020 , 15, 212-216	28.7	54
84	Direct observation of two-dimensional magnons in atomically thin CrI3. <i>Nature Physics</i> , 2021 , 17, 20-25	16.2	49
83	Vapor-transport growth of high optical quality WSe2 monolayers a. APL Materials, 2014, 2, 101101	5.7	48
82	Optical generation of high carrier densities in 2D semiconductor heterobilayers. <i>Science Advances</i> , 2019 , 5, eaax0145	14.3	40
81	Phonon-assisted oscillatory exciton dynamics in monolayer MoSe2. <i>Npj 2D Materials and Applications</i> , 2017 , 1,	8.8	37
8o	Systematic Doping Control of CVD Graphene Transistors with Functionalized Aromatic Self-Assembled Monolayers. <i>Advanced Functional Materials</i> , 2014 , 24, 3464-3470	15.6	36

79	Ultrathin van der Waals Metalenses. <i>Nano Letters</i> , 2018 , 18, 6961-6966	11.5	36
78	Experimental realization of all-angle negative refraction in acoustic gradient metasurface. <i>Applied Physics Letters</i> , 2017 , 111, 221602	3.4	35
77	Magnetic proximity and nonreciprocal current switching in a monolayer WTe helical edge. <i>Nature Materials</i> , 2020 , 19, 503-507	27	32
76	Layered Antiferromagnetism Induces Large Negative Magnetoresistance in the van der Waals Semiconductor CrSBr. <i>Advanced Materials</i> , 2020 , 32, e2003240	24	30
75	Dynamic Optical Tuning of Interlayer Interactions in the Transition Metal Dichalcogenides. <i>Nano Letters</i> , 2017 , 17, 7761-7766	11.5	29
74	Many-body effects in nonlinear optical responses of 2D layered semiconductors. <i>2D Materials</i> , 2017 , 4, 025024	5.9	28
73	Multiple hot-carrier collection in photo-excited graphene Moir uperlattices. <i>Science Advances</i> , 2016 , 2, e1600002	14.3	28
7 2	Magnetic Order and Symmetry in the 2D Semiconductor CrSBr. <i>Nano Letters</i> , 2021 , 21, 3511-3517	11.5	27
71	Intertwined Topological and Magnetic Orders in Atomically Thin Chern Insulator MnBiTe. <i>Nano Letters</i> , 2021 , 21, 2544-2550	11.5	26
70	Excitons and emergent quantum phenomena in stacked 2D semiconductors. <i>Nature</i> , 2021 , 599, 383-397	2 50.4	24
7° 69	Excitons and emergent quantum phenomena in stacked 2D semiconductors. <i>Nature</i> , 2021 , 599, 383-392. Encapsulated Silicon Nitride Nanobeam Cavity for Hybrid Nanophotonics. <i>ACS Photonics</i> , 2018 , 5, 2176-		23
69	Encapsulated Silicon Nitride Nanobeam Cavity for Hybrid Nanophotonics. <i>ACS Photonics</i> , 2018 , 5, 2176-Direct visualization of magnetic domains and moir@magnetism in twisted 2D magnets. <i>Science</i> ,	-26.81	23
69 68	Encapsulated Silicon Nitride Nanobeam Cavity for Hybrid Nanophotonics. <i>ACS Photonics</i> , 2018 , 5, 2176- Direct visualization of magnetic domains and moir[magnetism in twisted 2D magnets. <i>Science</i> , 2021 , 374, 1140-1144 Population pulsation resonances of excitons in monolayer MoSe2 with sub-1 BV linewidths.	-2 d.8 1 33-3	23
69 68 67	Encapsulated Silicon Nitride Nanobeam Cavity for Hybrid Nanophotonics. <i>ACS Photonics</i> , 2018 , 5, 2176- Direct visualization of magnetic domains and moir[magnetism in twisted 2D magnets. <i>Science</i> , 2021 , 374, 1140-1144 Population pulsation resonances of excitons in monolayer MoSe2 with sub-1 BV linewidths. <i>Physical Review Letters</i> , 2015 , 114, 137402 Theory of low-power ultra-broadband terahertz sideband generation in bi-layer graphene. <i>Nature</i>	-26 8 1 33-3 7-4	23 21 20
69 68 67 66	Encapsulated Silicon Nitride Nanobeam Cavity for Hybrid Nanophotonics. <i>ACS Photonics</i> , 2018 , 5, 2176-Direct visualization of magnetic domains and moir[magnetism in twisted 2D magnets. <i>Science</i> , 2021 , 374, 1140-1144 Population pulsation resonances of excitons in monolayer MoSe2 with sub-1 BV linewidths. <i>Physical Review Letters</i> , 2015 , 114, 137402 Theory of low-power ultra-broadband terahertz sideband generation in bi-layer graphene. <i>Nature Communications</i> , 2014 , 5, 4854 Magnetic domains and domain wall pinning in atomically thin CrBr revealed by nanoscale imaging.	-26 8 1 33-3 7-4	23 21 20 20
69 68 67 66 65	Encapsulated Silicon Nitride Nanobeam Cavity for Hybrid Nanophotonics. <i>ACS Photonics</i> , 2018 , 5, 2176- Direct visualization of magnetic domains and moir@magnetism in twisted 2D magnets. <i>Science</i> , 2021 , 374, 1140-1144 Population pulsation resonances of excitons in monolayer MoSe2 with sub-1 BV linewidths. <i>Physical Review Letters</i> , 2015 , 114, 137402 Theory of low-power ultra-broadband terahertz sideband generation in bi-layer graphene. <i>Nature Communications</i> , 2014 , 5, 4854 Magnetic domains and domain wall pinning in atomically thin CrBr revealed by nanoscale imaging. <i>Nature Communications</i> , 2021 , 12, 1989 Second harmonic generation in Janus MoSSe a monolayer and stacked bulk with vertical	-26.81 33.3 7.4 17.4	23 21 20 20 20

(2022-2019)

61	Virtual Trions in the Photoluminescence of Monolayer Transition-Metal Dichalcogenides. <i>Physical Review Letters</i> , 2019 , 122, 217401	7.4	16
60	Metasurface Integrated Monolayer Exciton Polariton. <i>Nano Letters</i> , 2020 , 20, 5292-5300	11.5	16
59	All-angle Negative Reflection with An Ultrathin Acoustic Gradient Metasurface: Floquet-Bloch Modes Perspective and Experimental Verification. <i>Scientific Reports</i> , 2017 , 7, 13852	4.9	15
58	Photo-Nernst current in graphene. <i>Nature Physics</i> , 2016 , 12, 236-239	16.2	15
57	Single-Crystalline Nanobelts Composed of Transition Metal Ditellurides. <i>Advanced Materials</i> , 2018 , 30, e1707260	24	15
56	Stacking Domain Wall Magnons in Twisted van der Waals Magnets. <i>Physical Review Letters</i> , 2020 , 125, 247201	7.4	13
55	Spiral Graphene Nanoribbons with Azulene Defects as Potential Nonlinear Optical Materials. <i>ACS Applied Nano Materials</i> , 2019 , 2, 1648-1654	5.6	13
54	Experimental observation of conductive edge states in weak topological insulator candidate HfTe5. <i>APL Materials</i> , 2018 , 6, 121111	5.7	13
53	Moir[trions in MoSe/WSe heterobilayers. <i>Nature Nanotechnology</i> , 2021 , 16, 1208-1213	28.7	13
52	Enhanced Shift Currents in Monolayer 2D GeS and SnS by Strain-Induced Band Gap Engineering. <i>ACS Omega</i> , 2020 , 5, 17207-17214	3.9	12
51	Interlayer electronic coupling on demand in a 2D magnetic semiconductor. <i>Nature Materials</i> , 2021 , 20, 1657-1662	27	12
50	Strong spin-orbit coupling and Dirac nodal lines in the three-dimensional electronic structure of metallic rutile IrO2. <i>Physical Review B</i> , 2019 , 99,	3.3	11
49	Two-Dimensional van der Waals Nanoplatelets with Robust Ferromagnetism. <i>Nano Letters</i> , 2020 , 20, 2100-2106	11.5	10
48	Spatial manipulating spin-polarization and tunneling patterns in graphene spirals via periphery structural modification. <i>Carbon</i> , 2017 , 113, 325-333	10.4	10
47	Intrinsic donor-bound excitons in ultraclean monolayer semiconductors. <i>Nature Communications</i> , 2021 , 12, 871	17.4	10
46	Phase engineering of Cr5Te8 with colossal anomalous Hall effect. <i>Nature Electronics</i> , 2022 , 5, 224-232	28.4	10
45	Strong Circularly Polarized Photoluminescence from Multilayer MoS2 Through Plasma Driven Direct-Gap Transition. <i>ACS Photonics</i> , 2016 , 3, 310-314	6.3	9
44	Reversible strain-induced magnetic phase transition in a van der Waals magnet <i>Nature Nanotechnology</i> , 2022 ,	28.7	9

43	Implementation of Outstanding Electronic Transport in Polar Covalent Boron Nitride Atomic Chains: another Extraordinary Odd-Even Behaviour. <i>Scientific Reports</i> , 2016 , 6, 26389	4.9	9
42	Mechanism of mechanically induced optoelectronic and spintronic phase transitions in 1D graphene spirals: insight into the role of interlayer coupling. <i>Nanoscale</i> , 2017 , 9, 9693-9700	7.7	8
41	Double-helix PLi chains: novel potential nonlinear optical materials. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 12618-12623	3.6	8
40	Theoretical study of electron tunneling through the spiral molecule junctions along spiral paths. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 3765-71	3.6	8
39	Even-Odd Layer-Dependent Anomalous Hall Effect in Topological Magnet MnBiTe Thin Films. <i>Nano Letters</i> , 2021 , 21, 7691-7698	11.5	8
38	Terahertz response of monolayer and few-layer WTe at the nanoscale. <i>Nature Communications</i> , 2021 , 12, 5594	17.4	8
37	Observation of topological surface states and strong electron/hole imbalance in extreme magnetoresistance compound LaBi. <i>Physical Review Materials</i> , 2018 , 2,	3.2	7
36	Unraveling Strain Gradient Induced Electromechanical Coupling in Twisted Double Bilayer Graphene Moir Guperlattices. <i>Advanced Materials</i> , 2021 , 33, e2105879	24	7
35	Magnetism and Its Structural Coupling Effects in 2D Ising Ferromagnetic Insulator VI. <i>Nano Letters</i> , 2021 , 21, 9180-9186	11.5	7
34	Modulation of the electronic band structure of silicene by polar two-dimensional substrates. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 21412-21420	3.6	6
33	Observation of Giant Optical Linear Dichroism in a Zigzag Antiferromagnet FePS. <i>Nano Letters</i> , 2021 , 21, 6938-6945	11.5	6
32	Chiral heteronanotubes: arrangement-dominated chiral interface states and conductivities. <i>Nanoscale</i> , 2019 , 11, 8699-8705	7.7	5
31	Competing correlated states and abundant orbital magnetism in twisted monolayer-bilayer graphene. <i>Nature Communications</i> , 2021 , 12, 4727	17.4	5
30	Light-induced ferromagnetism in moir uperlattices <i>Nature</i> , 2022 , 604, 468-473	50.4	5
29	Evolution of electronic structure and electron-phonon coupling in ultrathin tetragonal CoSe films. <i>Physical Review Materials</i> , 2018 , 2,	3.2	4
28	PN/PAs-WSe van der Waals heterostructures for solar cell and photodetector. <i>Scientific Reports</i> , 2020 , 10, 17213	4.9	4
27	Giant Out-of-Plane Second Harmonic Generation Susceptibility in Janus Group III Chalcogenide Monolayers. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 11285-11293	3.8	4
26	Phase-pure two-dimensional FexGeTe2 magnets with near-room-temperature TC. <i>Nano Research</i> ,1	10	4

25	Nanocavity Clock Spectroscopy: Resolving Competing Exciton Dynamics in WSe/MoSe Heterobilayers. <i>Nano Letters</i> , 2021 , 21, 522-528	11.5	4	
24	Defect-Induced Magnetic Skyrmion in a Two-Dimensional Chromium Triiodide Monolayer. <i>Jacs Au</i> , 2021 , 1, 1362-1367		4	
23	Giant and anisotropic second harmonic generation of VIV binary phosphorene derivative with permanent dipole. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 6544-6552	7.1	4	
22	Electric control of a canted-antiferromagnetic Chern insulator <i>Nature Communications</i> , 2022 , 13, 1668	17.4	4	
21	Evidence for equilibrium exciton condensation in monolayer WTe2. <i>Nature Physics</i> , 2022 , 18, 94-99	16.2	4	
20	Separation of the valley exciton-polariton in two-dimensional semiconductors with an anisotropic photonic crystal. <i>Physical Review B</i> , 2020 , 101,	3.3	3	
19	Introduction to the issue on graphene optoelectronics. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2014 , 20, 6-8	3.8	3	
18	Nano-spectroscopy of excitons in atomically thin transition metal dichalcogenides <i>Nature Communications</i> , 2022 , 13, 542	17.4	3	
17	Imaging Graphene Moir Superlattices via Scanning Kelvin Probe Microscopy. <i>Nano Letters</i> , 2021 , 21, 3280-3286	11.5	3	
16	Quantum oscillations in the field-induced ferromagnetic state of MnBi2\SbxTe4. <i>Physical Review B</i> , 2021 , 103,	3.3	3	
15	Effect of Hydrogen on Radiation-Induced Displacement Damage in AlGaN/GaN HEMTs. <i>IEEE Transactions on Nuclear Science</i> , 2021 , 68, 1258-1264	1.7	3	
14	Long-range transport of 2D excitons with acoustic waves <i>Nature Communications</i> , 2022 , 13, 1334	17.4	3	
13	Long Radiation Lifetime and Quasi-Isotropic Excitons in Antioxidant VIV Binary Phosphorene Allotropes with Intrinsic Dipole. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 14787-14796	3.8	2	
12	Monolayer Semiconductor Auger Detector. <i>Nano Letters</i> , 2020 , 20, 5538-5543	11.5	2	
11	Chemical doping for threshold control and contact resistance reduction in graphene and MoS2 field effect transistors 2013 ,		2	
10	Determination of the Spin Axis in Quantum Spin Hall Insulator Candidate Monolayer WTe2. <i>Physical Review X</i> , 2021 , 11,	9.1	2	
9	The study of displacement damage in AlGaN/GaN high electron mobility transistors based on experiment and simulation method. <i>IEEE Transactions on Nuclear Science</i> , 2022 , 1-1	1.7	1	
8	First-Principles Calculations for the Impact of Hydrogenation on the Electron Behavior and Stability of Borophene Nanosheets: Implications for Boron 2D Electronics. <i>ACS Applied Nano Materials</i> , 2022 , 5, 1419-1425	5.6	1	

7	Unveiling 2D Ferroelectricity and Ferromagnetism Interaction in van der Waals Heterobilayers. Journal of Physical Chemistry C, 2021 , 125, 27837-27843	3.8	1
6	Giant Shift Photovoltaic Current in Group V-V Binary Nanosheets. Advanced Theory and Simulations, 2100	0 4 . 7 2	0
5	Spin photovoltaic effect in magnetic van der Waals heterostructures. Science Advances, 2021 , 7, eabg80	9144.3	О
4	Observation of Single-Electron Transport and Charging on Individual Point Defects in Atomically Thin WSe2. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 14056-14064	3.8	О
3	The Potential of Phosphorus Nitride Monolayer for Liß Battery from the Anchoring and Diffusing Perspective: A First-Principles Study. <i>Advanced Theory and Simulations</i> , 2022 , 5, 2100305	3.5	О
2	Modulating the molecular third-order optical nonlinearity by curved surface of carbon skeleton. <i>Molecular Physics</i> , 2018 , 116, 242-250	1.7	
1	Graphene-based monoatomic chain spintronics: contact-derived half-metallicity, sp2 vs sp. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2021 , 126, 114486	3	