
Juan F Trigo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/403261/publications.pdf Version: 2024-02-01

ΙΠΑΝ Ε ΤΡΙΟΟ

#	Article	IF	CITATIONS
1	Structural, optical and electrical properties of evaporated kesterite films with different off-stoichiometric type. Materials Research Bulletin, 2022, 152, 111844.	5.2	3
2	Understanding ultrafast charge transfer processes in SnS and SnS ₂ : using the core hole clock method to measure attosecond orbital-dependent electron delocalisation in semiconducting layered materials. Journal of Materials Chemistry C, 2021, 9, 11859-11872.	5.5	5
3	A European proficiency test on thinâ€film tandem photovoltaic devices. Progress in Photovoltaics: Research and Applications, 2020, 28, 1258-1276.	8.1	0
4	Influence of surface density on the CO2 photoreduction activity of a DC magnetron sputtered TiO2 catalyst. Applied Catalysis B: Environmental, 2018, 224, 912-918.	20.2	30
5	Comparative Performance of Semi-Transparent PV Modules and Electrochromic Windows for Improving Energy Efficiency in Buildings. Energies, 2018, 11, 1526.	3.1	26
6	Cu 2 ZnSnS 4 thin films obtained by sulfurization of evaporated Cu 2 SnS 3 and ZnS layers: Influence of the ternary precursor features. Applied Surface Science, 2017, 400, 220-226.	6.1	8
7	Copper tin sulfide (Cu x SnS y) thin films evaporated with x = 3,4 atomic ratios: Influence of the substrate temperature and the subsequent annealing in sulfur. Materials Research Bulletin, 2016, 83, 116-121.	5.2	13
8	Copper tin sulfide (CTS) absorber thin films obtained by co-evaporation: Influence of the ratio Cu/Sn. Journal of Alloys and Compounds, 2015, 642, 40-44.	5.5	40
9	Growth of SnS thin films by co-evaporation and sulfurization for use as absorber layers in solar cells. Materials Chemistry and Physics, 2015, 167, 165-170.	4.0	14
10	SnS absorber thin films by co-evaporation: Optimization of the growth rate and influence of the annealing. Thin Solid Films, 2015, 582, 249-252.	1.8	30
11	Co-evaporated Tin Sulfide Thin Films on Bare and Mo-coated Glass Substrates as Photovoltaic Absorber Layers. Energy Procedia, 2014, 44, 96-104.	1.8	9
12	Round robin performance testing of organic photovoltaic devices. Renewable Energy, 2014, 63, 376-387.	8.9	15
13	Interlaboratory indoor ageing of roll-to-roll and spin coated organic photovoltaic devices: Testing the ISOS tests. Polymer Degradation and Stability, 2014, 109, 162-170.	5.8	17
14	Structural, chemical, and optical properties of tin sulfide thin films as controlled by the growth temperature during co-evaporation and subsequent annealing. Journal of Materials Science, 2013, 48, 3943-3949.	3.7	33
15	CuAlxGa1â^'xSe2 thin films for photovoltaic applications: Structural, electrical and morphological analysis. Materials Research Bulletin, 2012, 47, 2518-2524.	5.2	10
16	Simplified modulated evaporation process for the production of CuInS2 films with reduced substrate temperatures. Thin Solid Films, 2009, 517, 2167-2170.	1.8	15
17	Correlation of the near-infrared optical absorption with Cu concentration in coevaporated Cu–In–S films. Thin Solid Films, 2009, 517, 2260-2263.	1.8	3
18	Optical characterization of In2S3 solar cell buffer layers grown by chemical bath and physical vapor deposition. Solar Energy Materials and Solar Cells, 2008, 92, 1145-1148.	6.2	48

Juan F Trigo

#	Article	IF	CITATIONS
19	Optical characterization procedure for large thin films. , 2007, 6617, 312.		0
20	Splitting ofNi3dstates at the surface ofNiOnanostructures. Physical Review B, 2006, 74, .	3.2	38
21	Optical and structural characterisation of single and multilayer germanium/silicon monoxide systems. Thin Solid Films, 2005, 485, 274-283.	1.8	23
22	Factor analysis applied to the study of valence band resonant photoemission spectra in transition-metal compounds. Surface and Interface Analysis, 2002, 34, 244-247.	1.8	6
23	Pulsed laser deposition and electrodeposition techniques in growing CdTe and Cd x Hg 1â^'x Te thin films. Thin Solid Films, 2000, 361-362, 65-69.	1.8	26
24	Crystal-Field Effects at the TiO2â^'SiO2Interface As Observed by X-ray Absorption Spectroscopy. Langmuir, 2000, 16, 7066-7069.	3.5	32
25	Dielectric Properties of Ti, TiO2 and TiN from 1.5 to 60 eV Determined by Reflection Electron Energy Loss Spectroscopy (REELS) and Ellipsometry. Physica Status Solidi A, 1999, 175, 429-436.	1.7	13
26	Atomic force microscope study of the early stages of NiO deposition on graphite and mica. Thin Solid Films, 1998, 317, 59-63.	1.8	13
27	Calibration of the Probing Depth by Total Electron Yield of EXAFS Spectra in Oxide Overlayers (Ta2O5,) Tj ETQq1	1 0.78431 1.8	.4 _g gBT /Ove
28	Thin BN films obtained by dual-ion-beam sputtering: an FT-IR and spectroscopic ellipsometry characterization. Nuclear Instruments & Methods in Physics Research B, 1996, 112, 275-279.	1.4	5
29	Structural behavior of Co/Cu multilayers studied by X-ray absorption spectroscopy. Journal of Magnetism and Magnetic Materials, 1996, 161, 31-36.	2.3	3
30	Structural behavior of sputtered Co/Cu multilayers. Solid State Communications, 1996, 98, 179-184.	1.9	8
31	Study of the optical constants determination of thin films: Dependence on theoretical assumptions. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1995, 13, 2378-2383.	2.1	28
32	Quantitative analysis of REELS spectra of ZrO2: Determination of the dielectric loss function and inelastic mean free paths. Surface and Interface Analysis, 1994, 22, 124-128.	1.8	45
33	Characterization of Zr thin films grown by dual ion-beam sputtering. Vacuum, 1994, 45, 1039-1041.	3.5	4
34	Optical properties of Zr films grown under ion bombardment. Thin Solid Films, 1993, 228, 100-104.	1.8	3
35	Catalytic oxidation of Mo by caesium oxides. Surface and Interface Analysis, 1992, 19, 553-558.	1.8	3