Minna Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4032505/publications.pdf

Version: 2024-02-01

377584 355658 1,848 39 21 38 citations h-index g-index papers 42 42 42 2672 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Ultrasmall Mo ₂ C Embedded in Nâ€Doped Holey Carbon for Highâ€Efficiency Electrochemical Oxygen Reduction Reaction. ChemElectroChem, 2022, 9, .	1.7	2
2	Monolayer Nilr-Layered Double Hydroxide as a Long-Lived Efficient Oxygen Evolution Catalyst for Seawater Splitting. Journal of the American Chemical Society, 2022, 144, 9254-9263.	6.6	133
3	Template-free synthesis of non-noble metal single-atom electrocatalyst with N-doped holey carbon matrix for highly efficient oxygen reduction reaction in zinc-air batteries. Applied Catalysis B: Environmental, 2021, 285, 119780.	10.8	68
4	Enhanced selectivity and stability towards CO ₂ reduction of sub-5 nm Au NPs derived from supramolecular assembly. Chemical Communications, 2021, 57, 2491-2494.	2.2	6
5	Significantly Enhanced Overall Water Splitting Performance by Partial Oxidation of Ir through Au Modification in Core–Shell Alloy Structure. Journal of the American Chemical Society, 2021, 143, 4639-4645.	6.6	160
6	Encapsulating metal organic framework into hollow mesoporous carbon sphere as efficient oxygen bifunctional electrocatalyst. National Science Review, 2020, 7, 609-619.	4.6	95
7	Electrocatalytic Reduction Catalysts: Hollow Mesoporous Carbon Sphere Loaded Ni–N ₄ Singleâ€Atom: Support Structure Study for CO ₂ Electrocatalytic Reduction Catalyst (Small) Tj ETQc	q1 :1.2 0.784	43 b4 rgBT / 🕠
8	Hollow Mesoporous Carbon Sphere Loaded Ni–N ₄ Singleâ€Atom: Support Structure Study for CO ₂ Electrocatalytic Reduction Catalyst. Small, 2020, 16, e2003943.	5.2	82
9	Multipod Pd-Cucurbit[6]uril as an Efficient Bifunctional Electrocatalyst for Ethanol Oxidation and Oxygen Reduction Reactions. ACS Sustainable Chemistry and Engineering, 2020, 8, 9217-9225.	3.2	25
10	Ultrafine Ru nanoclusters anchored on cucurbit[6]uril/rGO for efficient hydrogen evolution in a broad pH range. Chemical Communications, 2020, 56, 9392-9395.	2.2	9
11	Replacing PVP by macrocycle cucurbit[6]uril to cap sub-5 nm Pd nanocubes as highly active and durable catalyst for ethanol electrooxidation. Nano Research, 2019, 12, 2628-2633.	5.8	14
12	Ultra-small Pd nanoparticles derived from a supramolecular assembly for enhanced electrochemical reduction of CO ₂ to CO. Chemical Communications, 2019, 55, 9805-9808.	2.2	18
13	Decamethylcucurbit[5]uril based supramolecular assemblies as efficient electrocatalysts for the oxygen reduction reaction. Chemical Communications, 2019, 55, 11687-11690.	2.2	4
14	Highly Active and Stable Water Splitting in Acidic Media Using a Bifunctional Iridium/Cucurbit[6]uril Catalyst. ACS Energy Letters, 2019, 4, 1301-1307.	8.8	54
15	N-Doped holey carbon materials derived from a metal-free macrocycle cucurbit[6]uril assembly as an efficient electrocatalyst for the oxygen reduction reaction. Chemical Communications, 2019, 55, 13832-13835.	2.2	12
16	Facile ultrafine copper seed-mediated approach for fabricating quasi-two-dimensional palladium-copper bimetallic trigonal hierarchical nanoframes. Nano Research, 2017, 10, 2810-2822.	5.8	5
17	Palladium nanocrystals stabilized by cucurbit[6]uril as efficient heterogeneous catalyst for direct C–H functionalization of polyfluoroarenes. Journal of Catalysis, 2015, 321, 62-69.	3.1	27
18	Recent Advances in the Stabilization of Platinum Electrocatalysts for Fuel ell Reactions. ChemCatChem, 2014, 6, 26-45.	1.8	174

#	Article	IF	CITATIONS
19	Palladium nanoparticles in situ generated in metal–organic films for catalytic applications. Journal of Materials Chemistry A, 2014, 2, 12185-12193.	5.2	11
20	Ru-assisted synthesis of $\{111\}$ -faceted Pd truncated bipyramids: a highly reactive, stable and restorable catalyst for formic acid oxidation. Chemical Communications, 2014, 50, 12970-12972.	2.2	16
21	Subâ€5 nm Pd–Ru Nanoparticle Alloys as Efficient Catalysts for Formic Acid Electrooxidation. ChemCatChem, 2014, 6, 1731-1736.	1.8	44
22	Cucurbituril: A promising organic building block for the design of coordination compounds and beyond. Coordination Chemistry Reviews, 2013, 257, 1334-1356.	9.5	191
23	Self-assembly of polyoxometalate–thionine multilayer films on magnetic microspheres as photocatalyst for methyl orange degradation under visible light irradiation. Journal of Colloid and Interface Science, 2013, 394, 434-440.	5.0	18
24	Crystalline Hybrid Solid Materials of Palladium and Decamethylcucurbit[5]uril as Recoverable Precatalysts for Heck Crossâ€Coupling Reactions. Chemistry - A European Journal, 2013, 19, 15661-15668.	1.7	18
25	Self-assembled Pd-dicyanobiphenyl multilayer films and their application in electrocatalytic oxidation of methanol in alkaline medium. Thin Solid Films, 2012, 524, 173-178.	0.8	3
26	Synthesis of palladium nanocatalysts with cucurbit[n]uril as both a protecting agent and a support for Suzuki and Heck reactions. Catalysis Science and Technology, 2012, 2, 156-163.	2.1	37
27	Mixed-phase PdRu bimetallic structures with high activity and stability for formic acid electrooxidation. Physical Chemistry Chemical Physics, 2012, 14, 8051.	1.3	41
28	Platinum Nanoparticles Stabilized by Cucurbit[6]uril with Enhanced Catalytic Activity and Excellent Poisoning Tolerance for Methanol Electrooxidation. Chemistry - A European Journal, 2012, 18, 12978-12985.	1.7	46
29	Facile synthesis of polyoxometalate–thionine composite via direct precipitation method and its photocatalytic activity for degradation of rhodamine B under visible light. Journal of Colloid and Interface Science, 2012, 365, 198-203.	5.0	19
30	Activation energy of the reaction between hexacyanoferrate (а) and thiosulfate ions catalyzed by platinum nanoparticles confined in nanometer space. Journal of Colloid and Interface Science, 2012, 369, 352-357.	5.0	2
31	Effects of Cocrystalline Subunits on the Supramolecular Chemistry of Me ₁₀ Q[5]: From Simple Inorganic Anions to Cluster Anions. Crystal Growth and Design, 2011, 11, 778-783.	1.4	24
32	The fabrication of palladium–pyridyl complex multilayers and their application as a catalyst for the Heck reaction. Journal of Materials Chemistry, 2011, 21, 16467.	6.7	40
33	Porous Anionic, Cationic, and Neutral Metal-Carboxylate Frameworks Constructed from Flexible Tetrapodal Ligands: Syntheses, Structures, Ion-Exchanges, and Magnetic Properties. Inorganic Chemistry, 2011, 50, 2264-2271.	1.9	90
34	Synthesis and characterization of two isomorphous cobalt(II), nickel(II) complexes with (63)(67,83)topologies. Inorganic Chemistry Communication, 2011, 14, 1237-1240.	1.8	9
35	Development of a polyoxometallate-based photocatalyst assembled with cucurbit[6]uril via hydrogen bonds for azo dyes degradation. Journal of Hazardous Materials, 2011, 186, 948-951.	6.5	73
36	Stable gold nanoparticle encapsulated in silica-dendrimers organic–inorganic hybrid composite as recyclable catalyst for oxidation of alcohol. Microporous and Mesoporous Materials, 2010, 136, 42-49.	2.2	44

Minna Cao

#	Article	IF	CITATION
37	Syntheses, structures, and properties of a series of supramolecular hybrids based on Keggin or Wells–Dawson polyoxometalates and 4,4′-bipyridines. Journal of Molecular Structure, 2010, 966, 33-38.	1.8	16
38	A water-insoluble and visible light induced polyoxometalate-based photocatalyst. Chemical Communications, 2010, 46, 2429.	2.2	143
39	Facile synthesis of palladium nanoparticles with high chemical activity using cucurbit[6]uril as protecting agent. Chemical Communications, 2010, 46, 5088.	2.2	75