List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4032350/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geoscientific Model Development, 2010, 3, 43-67.	1.3	1,590
2	The Community Earth System Model Version 2 (CESM2). Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001916.	1.3	935
3	Climate Change from 1850 to 2005 Simulated in CESM1(WACCM). Journal of Climate, 2013, 26, 7372-7391.	1.2	706
4	CAM-chem: description and evaluation of interactive atmospheric chemistry in the Community Earth System Model. Geoscientific Model Development, 2012, 5, 369-411.	1.3	633
5	Simulation of secular trends in the middle atmosphere, 1950–2003. Journal of Geophysical Research, 2007, 112, .	3.3	632
6	Emergence of healing in the Antarctic ozone layer. Science, 2016, 353, 269-274.	6.0	462
7	Asian Monsoon Transport of Pollution to the Stratosphere. Science, 2010, 328, 611-613.	6.0	406
8	Sensitivity of chemical tracers to meteorological parameters in the MOZARTâ€3 chemical transport model. Journal of Geophysical Research, 2007, 112, .	3.3	395
9	Multimodel projections of stratospheric ozone in the 21st century. Journal of Geophysical Research, 2007, 112, .	3.3	308
10	The Impact of Stratospheric Ozone Recovery on the Southern Hemisphere Westerly Jet. Science, 2008, 320, 1486-1489.	6.0	307
11	Chemistry–Climate Model Simulations of Twenty-First Century Stratospheric Climate and Circulation Changes. Journal of Climate, 2010, 23, 5349-5374.	1.2	280
12	Review of the global models used within phase 1 of the Chemistry–Climate Model Initiative (CCMI). Geoscientific Model Development, 2017, 10, 639-671.	1.3	277
13	The Whole Atmosphere Community Climate Model Version 6 (WACCM6). Journal of Geophysical Research D: Atmospheres, 2019, 124, 12380-12403.	1.2	261
14	The HAMMONIA Chemistry Climate Model: Sensitivity of the Mesopause Region to the 11-Year Solar Cycle and CO2 Doubling. Journal of Climate, 2006, 19, 3903-3931.	1.2	247
15	Longâ€ŧerm ozone changes and associated climate impacts in CMIP5 simulations. Journal of Geophysical Research D: Atmospheres, 2013, 118, 5029-5060.	1.2	243
16	Effect of El Niño–Southern Oscillation on the dynamical, thermal, and chemical structure of the middle atmosphere. Journal of Geophysical Research, 2004, 109, .	3.3	242
17	Modeling the whole atmosphere response to solar cycle changes in radiative and geomagnetic forcing. Journal of Geophysical Research, 2007, 112, .	3.3	230
18	Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models. Atmospheric Chemistry and Physics, 2010, 10, 9451-9472.	1.9	215

#	Article	IF	CITATIONS
19	Bromine and iodine chemistry in a global chemistry-climate model: description and evaluation of very short-lived oceanic sources. Atmospheric Chemistry and Physics, 2012, 12, 1423-1447.	1.9	193
20	The Chemistry Mechanism in the Community Earth System Model Version 2 (CESM2). Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001882.	1.3	189
21	Impact of monsoon circulations on the upper troposphere and lower stratosphere. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	183
22	Modification of the Gravity Wave Parameterization in the Whole Atmosphere Community Climate Model: Motivation and Results. Journals of the Atmospheric Sciences, 2017, 74, 275-291.	0.6	180
23	Global volcanic aerosol properties derived from emissions, 1990–2014, using CESM1(WACCM). Journal of Geophysical Research D: Atmospheres, 2016, 121, 2332-2348.	1.2	175
24	Multimodel assessment of the upper troposphere and lower stratosphere: Tropics and global trends. Journal of Geophysical Research, 2010, 115, .	3.3	171
25	Description and evaluation of tropospheric chemistry and aerosols in the Community Earth System Model (CESM1.2). Geoscientific Model Development, 2015, 8, 1395-1426.	1.3	159
26	Estimating the climate significance of halogen-driven ozone loss in the tropical marine troposphere. Atmospheric Chemistry and Physics, 2012, 12, 3939-3949.	1.9	157
27	Seasonal variation of methane, water vapor, and nitrogen oxides near the tropopause: Satellite observations and model simulations. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	156
28	Review of the formulation of presentâ€generation stratospheric chemistry limate models and associated external forcings. Journal of Geophysical Research, 2010, 115, .	3.3	150
29	lodine chemistry in the troposphere and its effect on ozone. Atmospheric Chemistry and Physics, 2014, 14, 13119-13143.	1.9	148
30	Thermosphere extension of the Whole Atmosphere Community Climate Model. Journal of Geophysical Research, 2010, 115, .	3.3	144
31	Impact of geoengineered aerosols on the troposphere and stratosphere. Journal of Geophysical Research, 2009, 114, .	3.3	141
32	Simulation of polar ozone depletion: An update. Journal of Geophysical Research D: Atmospheres, 2015, 120, 7958-7974.	1.2	132
33	Radiative and Chemical Response to Interactive Stratospheric Sulfate Aerosols in Fully Coupled CESM1(WACCM). Journal of Geophysical Research D: Atmospheres, 2017, 122, 13,061.	1.2	128
34	Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations. Atmospheric Chemistry and Physics, 2018, 18, 8409-8438.	1.9	128
35	Representation of the Community Earth System Model (CESM1) CAM4-chem within the Chemistry-Climate Model Initiative (CCMI). Geoscientific Model Development, 2016, 9, 1853-1890.	1.3	122
36	Global airborne sampling reveals a previously unobserved dimethyl sulfide oxidation mechanism in the marine atmosphere. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4505-4510.	3.3	118

#	Article	IF	CITATIONS
37	A new interpretation of total column BrO during Arctic spring. Geophysical Research Letters, 2010, 37,	1.5	116
38	Massive global ozone loss predicted following regional nuclear conflict. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5307-5312.	3.3	114
39	Chemical and dynamical discontinuity at the extratropical tropopause based on START08 and WACCM analyses. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	108
40	IMPACT, the LLNL 3-D global atmospheric chemical transport model for the combined troposphere and stratosphere: Model description and analysis of ozone and other trace gases. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	107
41	Photoreduction of gaseous oxidized mercury changes global atmospheric mercury speciation, transport and deposition. Nature Communications, 2018, 9, 4796.	5.8	107
42	Transport of chemical tracers from the boundary layer to stratosphere associated with the dynamics of the Asian summer monsoon. Journal of Geophysical Research D: Atmospheres, 2016, 121, 14,159.	1.2	101
43	Role of the QBO in modulating the influence of the 11 year solar cycle on the atmosphere using constant forcings. Journal of Geophysical Research, 2010, 115, .	3.3	93
44	On the distribution of CO ₂ and CO in the mesosphere and lower thermosphere. Journal of Geophysical Research D: Atmospheres, 2014, 119, 5700-5718.	1.2	90
45	Bromine partitioning in the tropical tropopause layer: implications for stratospheric injection. Atmospheric Chemistry and Physics, 2014, 14, 13391-13410.	1.9	90
46	Impact of Pinatubo aerosols on the partitioning between NO2and HNO3. Geophysical Research Letters, 1994, 21, 597-600.	1.5	88
47	Climate Forcing and Trends of Organic Aerosols in the Community Earth System Model (CESM2). Journal of Advances in Modeling Earth Systems, 2019, 11, 4323-4351.	1.3	87
48	Rapid increase in atmospheric iodine levels in the North Atlantic since the mid-20th century. Nature Communications, 2018, 9, 1452.	5.8	86
49	lodine oxide in the global marine boundary layer. Atmospheric Chemistry and Physics, 2015, 15, 583-593.	1.9	84
50	On the Determination of Age of Air Trends from Atmospheric Trace Species. Journals of the Atmospheric Sciences, 2011, 68, 139-154.	0.6	83
51	Nitrogen oxides from highâ€altitude aircraft: An update of potential effects on ozone. Journal of Geophysical Research, 1989, 94, 16351-16363.	3.3	81
52	The Tropical Tropopause Layer 1960–2100. Atmospheric Chemistry and Physics, 2009, 9, 1621-1637.	1.9	79
53	Historical Tropospheric and Stratospheric Ozone Radiative Forcing Using the CMIP6 Database. Geophysical Research Letters, 2018, 45, 3264-3273.	1.5	78
54	Stratospheric ozone loss over the Eurasian continent induced by the polar vortex shift. Nature Communications, 2018, 9, 206.	5.8	69

#	Article	IF	CITATIONS
55	Multimodel assessment of the upper troposphere and lower stratosphere: Extratropics. Journal of Geophysical Research, 2010, 115, .	3.3	67
56	Diurnal ozone variations in the stratosphere revealed in observations from the Superconducting Submillimeterâ€Wave Limbâ€Emission Sounder (SMILES) on board the International Space Station (ISS). Journal of Geophysical Research D: Atmospheres, 2013, 118, 2991-3006.	1.2	64
57	Analysis of satellite-derived Arctic tropospheric BrO columns in conjunction with aircraft measurements during ARCTAS and ARCPAC. Atmospheric Chemistry and Physics, 2012, 12, 1255-1285.	1.9	63
58	A negative feedback between anthropogenic ozone pollution and enhanced ocean emissions of iodine. Atmospheric Chemistry and Physics, 2015, 15, 2215-2224.	1.9	63
59	Sensitivity of 21st century stratospheric ozone to greenhouse gas scenarios. Geophysical Research Letters, 2010, 37, .	1.5	62
60	Sensitivity of Sudden Stratospheric Warmings to Previous Stratospheric Conditions. Journals of the Atmospheric Sciences, 2017, 74, 2857-2877.	0.6	62
61	Quantitative detection of iodine in the stratosphere. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1860-1866.	3.3	61
62	Observations of gravity wave forcing of the mesopause region during the January 2013 major Sudden Stratospheric Warming. Geophysical Research Letters, 2014, 41, 4745-4752.	1.5	59
63	Classification of stratospheric extreme events according to their downward propagation to the troposphere. Geophysical Research Letters, 2016, 43, 6665-6672.	1.5	58
64	Effects of Different Stratospheric SO ₂ Injection Altitudes on Stratospheric Chemistry and Dynamics. Journal of Geophysical Research D: Atmospheres, 2018, 123, 4654-4673.	1.2	58
65	Simulated lower stratospheric trends between 1970 and 2005: Identifying the role of climate and composition changes. Journal of Geophysical Research, 2008, 113, .	3.3	57
66	Budget of tropospheric ozone during TOPSE from two chemical transport models. Journal of Geophysical Research, 2003, 108, .	3.3	56
67	Ozone sensitivity to varying greenhouse gases and ozone-depleting substances in CCMI-1 simulations. Atmospheric Chemistry and Physics, 2018, 18, 1091-1114.	1.9	56
68	A set of diagnostics for evaluating chemistry-climate models in the extratropical tropopause region. Journal of Geophysical Research, 2007, 112, .	3.3	55
69	Stratospheric influences on the tropospheric seasonal cycles of nitrous oxide and chlorofluorocarbons. Geophysical Research Letters, 2004, 31, .	1.5	53
70	Impact of very short-lived halogens on stratospheric ozone abundance and UV radiation in a geo-engineered atmosphere. Atmospheric Chemistry and Physics, 2012, 12, 10945-10955.	1.9	53
71	Evaluation of Whole Atmosphere Community Climate Model simulations of ozone during Arctic winter 2004–2005. Journal of Geophysical Research D: Atmospheres, 2013, 118, 2673-2688.	1.2	53
72	Simulation of energetic particle precipitation effects during the 2003–2004 Arctic winter. Journal of Geophysical Research: Space Physics, 2015, 120, 5035-5048.	0.8	53

#	Article	IF	CITATIONS
73	The influence of the Calbuco eruption on the 2015 Antarctic ozone hole in a fully coupled chemistryâ€climate model. Geophysical Research Letters, 2017, 44, 2556-2561.	1.5	53
74	Injection of iodine to the stratosphere. Geophysical Research Letters, 2015, 42, 6852-6859.	1.5	52
75	Inter-model comparison of global hydroxyl radical (OH) distributions and their impact on atmospheric methane over the 2000–2016 period. Atmospheric Chemistry and Physics, 2019, 19, 13701-13723.	1.9	52
76	Troposphereâ€Stratosphere Temperature Trends Derived From Satellite Data Compared With Ensemble Simulations From WACCM. Journal of Geophysical Research D: Atmospheres, 2017, 122, 9651-9667.	1.2	51
77	The chemistry–climate model ECHAM6.3-HAM2.3-MOZ1.0. Geoscientific Model Development, 2018, 11, 1695-1723.	1.3	51
78	Revisiting the Mystery of Recent Stratospheric Temperature Trends. Geophysical Research Letters, 2018, 45, 9919-9933.	1.5	51
79	The Convective Transport of Active Species in the Tropics (CONTRAST) Experiment. Bulletin of the American Meteorological Society, 2017, 98, 106-128.	1.7	50
80	Significant Weakening of Brewerâ€Dobson Circulation Trends Over the 21st Century as a Consequence of the Montreal Protocol. Geophysical Research Letters, 2018, 45, 401-409.	1.5	50
81	Aviation fuel tracer simulation: Model intercomparison and implications. Geophysical Research Letters, 1998, 25, 3947-3950.	1.5	48
82	Simulation of polar stratospheric clouds in the specified dynamics version of the whole atmosphere community climate model. Journal of Geophysical Research D: Atmospheres, 2013, 118, 4991-5002.	1.2	47
83	Airborne measurements of organic bromine compounds in the Pacific tropical tropopause layer. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13789-13793.	3.3	47
84	Photodissociation Mechanisms of Major Mercury(II) Species in the Atmospheric Chemical Cycle of Mercury. Angewandte Chemie - International Edition, 2020, 59, 7605-7610.	7.2	45
85	On the stratospheric chemistry of midlatitude wildfire smoke. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2117325119.	3.3	45
86	Quantifying tracer transport in the tropical lower stratosphere using WACCM. Atmospheric Chemistry and Physics, 2013, 13, 10591-10607.	1.9	42
87	Multimodel estimates of atmospheric lifetimes of longâ€ived ozoneâ€depleting substances: Present and future. Journal of Geophysical Research D: Atmospheres, 2014, 119, 2555-2573.	1.2	42
88	Validation of ozone data from the Superconducting Submillimeterâ€Wave Limbâ€Emission Sounder (SMILES). Journal of Geophysical Research D: Atmospheres, 2013, 118, 5750-5769.	1.2	41
89	Impact of biogenic very short-lived bromine on the Antarctic ozone hole during the 21st century. Atmospheric Chemistry and Physics, 2017, 17, 1673-1688.	1.9	41
90	Clear sky UV simulations for the 21st century based on ozone and temperature projections from Chemistry-Climate Models. Atmospheric Chemistry and Physics, 2009, 9, 1165-1172.	1.9	40

#	Article	IF	CITATIONS
91	Nighttime secondary ozone layer during major stratospheric sudden warmings in specifiedâ€dynamics WACCM. Journal of Geophysical Research D: Atmospheres, 2013, 118, 8346-8358.	1.2	40
92	Evaluation of CESM1 (WACCM) free-running and specified dynamics atmospheric composition simulations using global multispecies satellite data records. Atmospheric Chemistry and Physics, 2019, 19, 4783-4821.	1.9	40
93	Gas-Phase Photolysis of Hg(I) Radical Species: A New Atmospheric Mercury Reduction Process. Journal of the American Chemical Society, 2019, 141, 8698-8702.	6.6	40
94	On the Identification of Ozone Recovery. Geophysical Research Letters, 2018, 45, 5158-5165.	1.5	39
95	The Effect of Solar Flux Variations and Trace Gas Emissions on Recent Trends in Stratospheric Ozone and Temperature. Journal of Geomagnetism and Geoelectricity, 1991, 43, 709-718.	0.8	38
96	Natural halogens buffer tropospheric ozone in a changing climate. Nature Climate Change, 2020, 10, 147-154.	8.1	37
97	Stratospheric Injection of Brominated Very Shortâ€Lived Substances: Aircraft Observations in the Western Pacific and Representation in Global Models. Journal of Geophysical Research D: Atmospheres, 2018, 123, 5690-5719.	1.2	36
98	Mirrored changes in Antarctic ozone and stratospheric temperature in the late 20th versus early 21st centuries. Journal of Geophysical Research D: Atmospheres, 2017, 122, 8940-8950.	1.2	35
99	Tropospheric transport differences between models using the same largeâ€scale meteorological fields. Geophysical Research Letters, 2017, 44, 1068-1078.	1.5	34
100	Forecasts and assimilation experiments of the Antarctic ozone hole 2008. Atmospheric Chemistry and Physics, 2011, 11, 1961-1977.	1.9	33
101	Mercury oxidation from bromine chemistry in the free troposphere over the southeasternÂUS. Atmospheric Chemistry and Physics, 2016, 16, 3743-3760.	1.9	33
102	A pervasive role for biomass burning in tropical high ozone/low water structures. Nature Communications, 2016, 7, 10267.	5.8	33
103	BrO and inferred Br _{<i>y</i>} profiles over the western Pacific: relevance of inorganic bromine sources and a Br _{<i>y</i>} minimum in the aged tropical tropopause layer. Atmospheric Chemistry and Physics. 2017. 17, 15245-15270	1.9	33
104	Longest continuous ground-based measurements of mesospheric CO. Geophysical Research Letters, 2003, 30, n/a-n/a.	1.5	32
105	Hydrocarbons in the upper troposphere and lower stratosphere observed from ACEâ€FTS and comparisons with WACCM. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1964-1980.	1.2	32
106	Ensemble simulations of the role of the stratosphere in the attribution of northern extratropical tropospheric ozone variability. Atmospheric Chemistry and Physics, 2015, 15, 2341-2365.	1.9	32
107	Observing the Impact of Calbuco Volcanic Aerosols on South Polar Ozone Depletion in 2015. Journal of Geophysical Research D: Atmospheres, 2017, 122, 11,862.	1.2	32
108	Using the Artificial Tracer e90 to Examine Present and Future UTLS Tracer Transport in WACCM. Journals of the Atmospheric Sciences, 2017, 74, 3383-3403.	0.6	32

#	Article	IF	CITATIONS
109	Formaldehyde in the Tropical Western Pacific: Chemical Sources and Sinks, Convective Transport, and Representation in CAMâ€Chem and the CCMI Models. Journal of Geophysical Research D: Atmospheres, 2017, 122, 11201-11226.	1.2	32
110	Large-scale tropospheric transport in the Chemistry–Climate Model Initiative (CCMI) simulations. Atmospheric Chemistry and Physics, 2018, 18, 7217-7235.	1.9	32
111	Quantifying the effect of mixing on the mean age of air in CCMVal-2 and CCMI-1 models. Atmospheric Chemistry and Physics, 2018, 18, 6699-6720.	1.9	32
112	Nighttime atmospheric chemistry of iodine. Atmospheric Chemistry and Physics, 2016, 16, 15593-15604.	1.9	31
113	Stratospheric Aerosols, Polar Stratospheric Clouds, and Polar Ozone Depletion After the Mount Calbuco Eruption in 2015. Journal of Geophysical Research D: Atmospheres, 2018, 123, 12,308.	1.2	31
114	Modeling the Sources and Chemistry of Polar Tropospheric Halogens (Cl, Br, and I) Using the CAM hem Global Chemistry limate Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 2259-2289.	1.3	31
115	Atmospheric tracers during the 2003–2004 stratospheric warming event and impact of ozone intrusions in the troposphere. Atmospheric Chemistry and Physics, 2009, 9, 2157-2170.	1.9	30
116	Key drivers of ozone change and its radiative forcing over the 21st century. Atmospheric Chemistry and Physics, 2018, 18, 6121-6139.	1.9	30
117	Simulations of the response of mesospheric circulation and temperature to the Antarctic ozone hole. Geophysical Research Letters, 2010, 37, .	1.5	29
118	The influence of mixing on the stratospheric age of air changes in the 21st century. Atmospheric Chemistry and Physics, 2019, 19, 921-940.	1.9	29
119	The Global Modeling Initiative assessment model: Application to high-speed civil transport perturbation. Journal of Geophysical Research, 2001, 106, 1693-1711.	3.3	28
120	"World avoided―simulations with the Whole Atmosphere Community Climate Model. Journal of Geophysical Research, 2012, 117, .	3.3	28
121	Large Impacts, Past and Future, of Ozoneâ€Depleting Substances on Brewerâ€Dobson Circulation Trends: A Multimodel Assessment. Journal of Geophysical Research D: Atmospheres, 2019, 124, 6669-6680.	1.2	28
122	On Recent Large Antarctic Ozone Holes and Ozone Recovery Metrics. Geophysical Research Letters, 2021, 48, e2021GL095232.	1.5	28
123	The global impact of supersaturation in a coupled chemistry-climate model. Atmospheric Chemistry and Physics, 2007, 7, 1629-1643.	1.9	27
124	Quantifying the causes of differences in tropospheric OH within global models. Journal of Geophysical Research D: Atmospheres, 2017, 122, 1983-2007.	1.2	27
125	The strength of the meridional overturning circulation of the stratosphere. Nature Geoscience, 2017, 10, 663-667.	5.4	27
126	Tropospheric ozone in CCMI models and Gaussian process emulation to understand biases in the SOCOLv3 chemistry–climate model. Atmospheric Chemistry and Physics, 2018, 18, 16155-16172.	1.9	27

#	Article	IF	CITATIONS
127	The effect of atmospheric nudging on the stratospheric residual circulation in chemistry–climate models. Atmospheric Chemistry and Physics, 2019, 19, 11559-11586.	1.9	27
128	Atmospheric changes caused by galactic cosmic rays over the period 1960–2010. Atmospheric Chemistry and Physics, 2016, 16, 5853-5866.	1.9	26
129	Deriving Global OH Abundance and Atmospheric Lifetimes for Longâ€Lived Gases: A Search for CH ₃ CCl ₃ Alternatives. Journal of Geophysical Research D: Atmospheres, 2017, 122, 11,914.	1.2	26
130	On the discrepancy of HCl processing in the core of the wintertime polar vortices. Atmospheric Chemistry and Physics, 2018, 18, 8647-8666.	1.9	26
131	New Insights on the Impact of Ozoneâ€Depleting Substances on the Brewerâ€Dobson Circulation. Journal of Geophysical Research D: Atmospheres, 2019, 124, 2435-2451.	1.2	26
132	The potential to narrow uncertainty in projections of stratospheric ozone over the 21st century. Atmospheric Chemistry and Physics, 2010, 10, 9473-9486.	1.9	25
133	Future trends in stratosphere-to-troposphere transport in CCMI models. Atmospheric Chemistry and Physics, 2020, 20, 6883-6901.	1.9	25
134	Upward transport into and within the Asian monsoon anticyclone as inferred from StratoClim trace gas observations. Atmospheric Chemistry and Physics, 2021, 21, 1267-1285.	1.9	25
135	A machine learning examination of hydroxyl radical differences among model simulations for CCMI-1. Atmospheric Chemistry and Physics, 2020, 20, 1341-1361.	1.9	24
136	Monsoon circulations and tropical heterogeneous chlorine chemistry in the stratosphere. Geophysical Research Letters, 2016, 43, 12,624.	1.5	23
137	Clear-sky ultraviolet radiation modelling using output from the Chemistry Climate Model Initiative. Atmospheric Chemistry and Physics, 2019, 19, 10087-10110.	1.9	22
138	Variations in the free chlorine content of the stratosphere (1991-1997): Anthropogenic, volcanic, and methane influences. Journal of Geophysical Research, 2000, 105, 4471-4481.	3.3	20
139	Tropospheric ozone decrease due to the Mount Pinatubo eruption: Reduced stratospheric influx. Geophysical Research Letters, 2013, 40, 5553-5558.	1.5	20
140	Stratospheric and mesospheric HO ₂ observations from the Aura Microwave Limb Sounder. Atmospheric Chemistry and Physics, 2015, 15, 2889-2902.	1.9	20
141	On the secular trend of CO x and CO 2 in the lower thermosphere. Journal of Geophysical Research D: Atmospheres, 2016, 121, 3634-3644.	1.2	20
142	Reactive halogens increase the global methane lifetime and radiative forcing in the 21st century. Nature Communications, 2022, 13, 2768.	5.8	20
143	Commentary on using equivalent latitude in the upper troposphere and lower stratosphere. Atmospheric Chemistry and Physics, 2012, 12, 9187-9199.	1.9	19
144	Trajectory model simulations of ozone (O ₃) and carbon monoxide (CO) in the lower stratosphere. Atmospheric Chemistry and Physics, 2014, 14, 7135-7147.	1.9	19

#	Article	IF	CITATIONS
145	CO at 40–80 km above Kiruna observed by the ground-based microwave radiometer KIMRA and simulated by the Whole Atmosphere Community Climate Model. Atmospheric Chemistry and Physics, 2012, 12, 3261-3271.	1.9	18
146	Bimodal distribution of free tropospheric ozone over the tropical western Pacific revealed by airborne observations. Geophysical Research Letters, 2015, 42, 7844-7851.	1.5	18
147	Sunset–sunrise difference in solar occultation ozone measurements (SAGE II, HALOE, and ACE–FTS) and its relationship to tidal vertical winds. Atmospheric Chemistry and Physics, 2015, 15, 829-843.	1.9	18
148	Development of a Polar Stratospheric Cloud Model within the Community Earth System Model using constraints on Type I PSCs from the 2010–2011 Arctic winter. Journal of Advances in Modeling Earth Systems, 2015, 7, 551-585.	1.3	18
149	An observationally constrained evaluation of the oxidative capacity in the tropical western Pacific troposphere. Journal of Geophysical Research D: Atmospheres, 2016, 121, 7461-7488.	1.2	18
150	Assessing the ability to derive rates of polar middle-atmospheric descent using trace gas measurements from remote sensors. Atmospheric Chemistry and Physics, 2018, 18, 1457-1474.	1.9	18
151	Prediction of Northern Hemisphere Regional Surface Temperatures Using Stratospheric Ozone Information. Journal of Geophysical Research D: Atmospheres, 2019, 124, 5922-5933.	1.2	18
152	On the role of trend and variability in the hydroxyl radical (OH) in the global methane budget. Atmospheric Chemistry and Physics, 2020, 20, 13011-13022.	1.9	18
153	Reconciling modeled and observed temperature trends over Antarctica. Geophysical Research Letters, 2012, 39, .	1.5	17
154	Variability of Stratospheric Reactive Nitrogen and Ozone Related to the QBO. Journal of Geophysical Research D: Atmospheres, 2017, 122, 10,103.	1.2	17
155	Ocean Biogeochemistry Control on the Marine Emissions of Brominated Very Shortâ€Lived Ozoneâ€Depleting Substances: A Machineâ€Learning Approach. Journal of Geophysical Research D: Atmospheres, 2019, 124, 12319-12339.	1.2	17
156	Observed Changes in the Southern Hemispheric Circulation in May. Journal of Climate, 2017, 30, 527-536.	1.2	16
157	The Impact of Boreal Summer ENSO Events on Tropical Lower Stratospheric Ozone. Journal of Geophysical Research D: Atmospheres, 2018, 123, 9843-9857.	1.2	16
158	Reappraisal of the Climate Impacts of Ozoneâ€Depleting Substances. Geophysical Research Letters, 2020, 47, e2020GL088295.	1.5	16
159	Description and Evaluation of the specified-dynamics experiment in the Chemistry-Climate Model Initiative. Atmospheric Chemistry and Physics, 2020, 20, 3809-3840.	1.9	16
160	Projecting ozone hole recovery using an ensemble of chemistry–climate models weighted by model performance and independence. Atmospheric Chemistry and Physics, 2020, 20, 9961-9977.	1.9	16
161	New Aura Microwave Limb Sounder observations of BrO and implications for Br _y . Atmospheric Measurement Techniques, 2012, 5, 1741-1751. 	1.2	15
162	Revisiting Southern Hemisphere polar stratospheric temperature trends in WACCM: The role of dynamical forcing. Geophysical Research Letters, 2017, 44, 3402-3410.	1.5	15

#	Article	IF	CITATIONS
163	Influence of Arctic stratospheric ozone on surface climate in CCMI models. Atmospheric Chemistry and Physics, 2019, 19, 9253-9268.	1.9	15
164	The influence of iodine on the Antarctic stratospheric ozone hole. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	15
165	Comparing simulated PSC optical properties with CALIPSO observations during the 2010 Antarctic winter. Journal of Geophysical Research D: Atmospheres, 2017, 122, 1175-1202.	1.2	14
166	Trend differences in lower stratospheric water vapour between Boulder and the zonal mean and their role in understanding fundamental observational discrepancies. Atmospheric Chemistry and Physics, 2018, 18, 8331-8351.	1.9	14
167	Revising the Ozone Depletion Potentials Metric for Shortâ€Lived Chemicals Such as CF ₃ 1 and CH ₃ 1. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032414.	1.2	14
168	The Simulation of Stratospheric Water Vapor Over the Asian Summer Monsoon in CESM1(WACCM) Models. Journal of Geophysical Research D: Atmospheres, 2018, 123, 11377-11391.	1.2	13
169	Evaluating the Relationship between Interannual Variations in the Antarctic Ozone Hole and Southern Hemisphere Surface Climate in Chemistry–Climate Models. Journal of Climate, 2019, 32, 3131-3151.	1.2	13
170	The Upper Stratospheric Solar Cycle Ozone Response. Geophysical Research Letters, 2019, 46, 1831-1841.	1.5	13
171	Extreme Ozone Loss Following Nuclear War Results in Enhanced Surface Ultraviolet Radiation. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035079.	1.2	13
172	Sensitivity of Total Column Ozone to Stratospheric Sulfur Injection Strategies. Geophysical Research Letters, 2021, 48, e2021GL094058.	1.5	13
173	An Arctic ozone hole in 2020 if not for the Montreal Protocol. Atmospheric Chemistry and Physics, 2021, 21, 15771-15781.	1.9	13
174	Rate parameter uncertainty effects in assessing stratospheric ozone depletion by supersonic aviation. Geophysical Research Letters, 1997, 24, 2737-2740.	1.5	12
175	Evaluating Simulations of Interhemispheric Transport: Interhemispheric Exchange Time Versus SF ₆ Age. Geophysical Research Letters, 2019, 46, 1113-1120.	1.5	12
176	Development of a Polar Stratospheric Cloud Model Within the Community Earth System Model: Assessment of 2010 Antarctic Winter. Journal of Geophysical Research D: Atmospheres, 2017, 122, 10,418.	1.2	11
177	On the Role of Heterogeneous Chemistry in Ozone Depletion and Recovery. Geophysical Research Letters, 2018, 45, 7835-7842.	1.5	11
178	Intercomparison Between Surrogate, Explicit, and Full Treatments of VSL Bromine Chemistry Within the CAM hem Chemistry limate Model. Geophysical Research Letters, 2021, 48, e2020GL091125.	1.5	11
179	Assessing Effects of Rate Parameter Changes on Ozone Models Using Sensitivity Analysisâ€. Journal of Physical Chemistry A, 2001, 105, 1449-1455.	1.1	10
180	Investigation of the transport processes controlling the geographic distribution of carbon monoxide at the tropical tropopause. Journal of Geophysical Research D: Atmospheres, 2015, 120, 2067-2086.	1.2	10

#	Article	IF	CITATIONS
181	Detectability of the impacts of ozone-depleting substances and greenhouse gases upon stratospheric ozone accounting for nonlinearities in historical forcings. Atmospheric Chemistry and Physics, 2018, 18, 143-166.	1.9	10
182	The Impact on the Ozone Layer of a Potential Fleet of Civil Hypersonic Aircraft. Earth's Future, 2020, 8, e2020EF001626.	2.4	10
183	Potential Impacts of Supersonic Aircraft Emissions on Ozone and Resulting Forcing on Climate: An Update on Historical Analysis. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034130.	1.2	10
184	The Role of Natural Halogens in Global Tropospheric Ozone Chemistry and Budget Under Different 21st Century Climate Scenarios. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034859.	1.2	10
185	Assessment of the interannual variability and influence of the QBO and upwelling on tracer–tracer distributions of N ₂ O and O ₃ in the tropical lower stratosphere. Atmospheric Chemistry and Physics, 2013, 13, 3619-3641.	1.9	9
186	Climatological impact of the Brewer–Dobson circulation on the N ₂ O budget in WACCM, a chemical reanalysis and a CTM driven by four dynamical reanalyses. Atmospheric Chemistry and Physics, 2020, 20, 12609-12631.	1.9	9
187	Large-scale transport into the Arctic: the roles of the midlatitude jet and the Hadley Cell. Atmospheric Chemistry and Physics, 2019, 19, 5511-5528.	1.9	8
188	Influence of the El Niño–Southern Oscillation on entry stratospheric water vapor in coupled chemistry–ocean CCMI and CMIP6 models. Atmospheric Chemistry and Physics, 2021, 21, 3725-3740.	1.9	8
189	Design and description of the MUSICA IASI full retrieval product. Earth System Science Data, 2022, 14, 709-742.	3.7	8
190	Modeling the inorganic bromine partitioning in the tropical tropopause layer over the eastern and western Pacific Ocean. Atmospheric Chemistry and Physics, 2017, 17, 9917-9930.	1.9	7
191	Modeled and Observed Volcanic Aerosol Control on Stratospheric NO _y and Cl _y . Journal of Geophysical Research D: Atmospheres, 2019, 124, 10283-10303.	1.2	7
192	Stratospheric Ozone and Climate Forcing Sensitivity to Cruise Altitudes for Fleets of Potential Supersonic Transport Aircraft. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034971.	1.2	7
193	The response of mesospheric H ₂ O and CO to solar irradiance variability in models and observations. Atmospheric Chemistry and Physics, 2021, 21, 201-216.	1.9	6
194	The role of midlatitude mixing barriers in creating the annual variation of total ozone in high northern latitudes. Journal of Geophysical Research D: Atmospheres, 2014, 119, 9578-9595.	1.2	5
195	Novel approaches to improve estimates of short-lived halocarbon emissions during summer from the Southern Ocean using airborne observations. Atmospheric Chemistry and Physics, 2019, 19, 14071-14090.	1.9	5
196	Tropical Stratospheric Circulation and Ozone Coupled to Pacific Multiâ€Đecadal Variability. Geophysical Research Letters, 2021, 48, e2020GL092162.	1.5	5
197	Predictions of future ozone changes. International Journal of Environmental Studies, 1996, 51, 269-283.	0.7	4
198	A Lagrangian Model Diagnosis of Stratospheric Contributions to Tropical Midtropospheric Air. Journal of Geophysical Research D: Atmospheres, 2018, 123, 9764-9785.	1.2	4

#	Article	IF	CITATIONS
199	The global diabatic circulation of the stratosphere as a metric for the Brewer–Dobson circulation. Atmospheric Chemistry and Physics, 2019, 19, 5069-5090.	1.9	4
200	Photodissociation Mechanisms of Major Mercury(II) Species in the Atmospheric Chemical Cycle of Mercury. Angewandte Chemie, 2020, 132, 7675-7680.	1.6	4
201	Prediction of Northern Hemisphere Regional Sea Ice Extent and Snow Depth Using Stratospheric Ozone Information. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031770.	1.2	4
202	Model estimations of geophysical variability between satellite measurements of ozone profiles. Atmospheric Measurement Techniques, 2021, 14, 1425-1438.	1.2	4
203	The Chemistry of Mercury in the Stratosphere. Geophysical Research Letters, 2022, 49, .	1.5	4
204	Zonally uniform tidal oscillations in the tropical stratosphere. Geophysical Research Letters, 2015, 42, 9553-9560.	1.5	3
205	Evaluating Stratospheric Tropical Width Using Tracer Concentrations. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033081.	1.2	3
206	Fate of Pollution Emitted During the 2015 Indonesian Fire Season. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033474.	1.2	3
207	Upper stratospheric ClO and HOCl trends (2005–2020): Aura Microwave Limb Sounder and model results. Atmospheric Chemistry and Physics, 2022, 22, 4779-4799.	1.9	3
208	Can the Maddenâ€Julian Oscillation Affect the Antarctic Total Column Ozone?. Geophysical Research Letters, 2020, 47, e2020GL088886.	1.5	2
209	On the Southern Hemisphere Stratospheric Response to ENSO and Its Impacts on Tropospheric Circulation. Journal of Climate, 2022, 35, 1963-1981.	1.2	2
210	Effects of injected ice particles in the lower stratosphere on the Antarctic ozone hole. Earth's Future, 2015, 3, 143-158.	2.4	1
211	Atmospheric Chemistry Signatures of an Equatorially Symmetric Matsuno–Gill Circulation Pattern. Journals of the Atmospheric Sciences, 2021, 78, 107-116.	0.6	1
212	Quantifying the Imprints of Stratospheric Contributions to Interhemispheric Differences in Tropospheric CFCâ€11, CFCâ€12, and N 2 O Abundances. Geophysical Research Letters, 2021, 48, e2021GL093700.	1.5	1
213	Subpolar Activation of Halogen Heterogeneous Chemistry in Austral Spring. Geophysical Research Letters, 2021, 48, e2020GL090036.	1.5	1
214	Issues and concerns about global atmospheric Ozone. Energy, 1993, 18, 1249-1262.	4.5	0
215	The viability of trajectory analysis for diagnosing dynamical and chemical influences on ozone concentrations in the UTLS. Journal of Geophysical Research D: Atmospheres, 2017, 122, 6025-6042.	1.2	0