Yi-Qiao Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4031561/publications.pdf Version: 2024-02-01

VI-OINO SONC

#	Article	lF	CITATIONS
1	Ringing cancellation in Carr-Purcell-Meiboom-Gill-type sequences. Magnetic Resonance Letters, 2022, 2, 233-242.	0.7	2
2	Mapping the human connectome using diffusion MRI at 300 mT/m gradient strength: Methodological advances and scientific impact. NeuroImage, 2022, 254, 118958.	2.1	18
3	Measurement of Full Diffusion Tensor Distribution Using High-Gradient Diffusion MRI and Applications in Diffuse Gliomas. Frontiers in Physics, 2022, 10, .	1.0	1
4	Adsorption of Polar Species at Crude Oil–Water Interfaces: the Chemoelastic Behavior. Langmuir, 2022, 38, 6523-6530.	1.6	7
5	Multiphysics NMR correlation spectroscopy. Journal of Magnetic Resonance, 2021, 322, 106887.	1.2	3
6	A Compact GaNFET-Based Power Amplifier for ASIC-Based Miniature NMR Spectrometers. , 2021, , .		1
7	Analytical models of probe dynamics effects on NMR measurements. Journal of Magnetic Resonance, 2021, 327, 106975.	1.2	5
8	Inside-out NMR with two concentric ring magnets. Journal of Magnetic Resonance, 2021, 333, 107082.	1.2	13
9	Portable NMR with Parallelism. Analytical Chemistry, 2020, 92, 2112-2120.	3.2	28
10	Interfacial Viscoelasticity in Crude Oil-Water Systems to Understand Incremental Oil Recovery. , 2020, , .		3
11	Remote Detection of Earth's Field Nuclear Magnetic Resonance with a Robust Induction Magnetometer. Physical Review Applied, 2020, 13, .	1.5	1
12	Optimization of multidimensional MR data acquisition for relaxation and diffusion. NMR in Biomedicine, 2020, 33, e4238.	1.6	13
13	Elastic Regression-Tree Learning in a Heterogeneous Computing Environment. IEEE Internet of Things Journal, 2019, 6, 8826-8834.	5.5	1
14	A miniaturized spectrometer for NMR relaxometry under extreme conditions. Scientific Reports, 2019, 9, 11174.	1.6	13
15	Low fields but high impact: Ex-situ NMR and MRI. Journal of Magnetic Resonance, 2019, 306, 109-111.	1.2	15
16	NMR application in unconventional shale reservoirs – A new porous media research frontier. Progress in Nuclear Magnetic Resonance Spectroscopy, 2019, 112-113, 17-33.	3.9	115
17	Realtime optimization of multidimensional NMR spectroscopy on embedded sensing devices. Scientific Reports, 2019, 9, 17486.	1.6	6
18	In vivo microscopic diffusional kurtosis imaging with symmetrized double diffusion encoding EPI. Magnetic Resonance in Medicine, 2019, 81, 533-541.	1.9	10

#	Article	IF	CITATIONS
19	Preliminary evaluation of accelerated microscopic diffusional kurtosis imaging (μDKI) in a rodent model of epilepsy. Magnetic Resonance Imaging, 2019, 56, 90-95.	1.0	5
20	Real-time optimization of nuclear magnetic resonance experiments. Journal of Magnetic Resonance, 2018, 289, 72-78.	1.2	15
21	Real-Time Data Inversion Methods for Low-Field Nuclear Magnetic Resonance (NMR). , 2018, , .		2
22	Ring Magnet Design Considerations for Obtaining Magnetic Resonance Signals in Low Non-Uniform Fields. IEEE Transactions on Magnetics, 2018, 54, 1-4.	1.2	3
23	Porosity of Drill-Cuttings Using Multinuclear ¹⁹ F and ¹ H NMR Measurements. Energy & Fuels, 2018, 32, 7467-7470.	2.5	16
24	Effect of off-resonance on T1 saturation recovery measurement in inhomogeneous fields. Journal of Magnetic Resonance, 2017, 281, 31-43.	1.2	10
25	Relative hydrogen index as a fast method for the simultaneous determination of physicochemical properties of petroleum fractions. Fuel, 2017, 210, 41-48.	3.4	12
26	Saturation-inversion-recovery: A method for T1 measurement. Journal of Magnetic Resonance, 2017, 274, 137-143.	1.2	16
27	Integrated CMOS spectrometer for multi-dimensional NMR spectroscopy. , 2017, , .		3
28	Direct correlation of diffusion and pore size distributions with low field NMR. Journal of Magnetic Resonance, 2016, 269, 196-202.	1.2	24
29	Evidence of Aromaticity-Specific Maltene NMR Relaxation Enhancement Promoted by Semi-immobilized Radicals. Energy & Fuels, 2016, 30, 3886-3893.	2.5	17
30	Chemical analysis using low-field magnetic resonance. TrAC - Trends in Analytical Chemistry, 2016, 83, 84-93.	5.8	10
31	The robust identification of exchange from T2–T2 time-domain features. Journal of Magnetic Resonance, 2016, 265, 164-171.	1.2	27
32	Fully-Automated High-Throughput NMR System for Screening of Haploid Kernels of Maize (Corn) by Measurement of Oil Content. PLoS ONE, 2016, 11, e0159444.	1.1	35
33	Detecting compartmental nonâ€Gaussian diffusion with symmetrized doubleâ€PFG MRI. NMR in Biomedicine, 2015, 28, 1550-1556.	1.6	23
34	Investigating internal magnetic field gradients in aquifer sediments. Geophysics, 2015, 80, D281-D294.	1.4	16
35	Pressure-Driven Suspension Flow near Jamming. Physical Review Letters, 2015, 114, 088301.	2.9	25
36	Restricted diffusion effects on nuclear magnetic resonance DT2 maps. Geophysics, 2015, 80, E41-E47.	1.4	10

#	Article	IF	CITATIONS
37	Heteronuclear J-coupling measurements in grossly inhomogeneous magnetic fields. Journal of Magnetic Resonance, 2015, 255, 15-27.	1.2	10
38	Robust determination of surface relaxivity from nuclear magnetic resonance DT2 measurements. Journal of Magnetic Resonance, 2015, 259, 146-152.	1.2	34
39	Fluorine tracers for the identification of molecular interaction with porous asphaltene aggregates in crude oil. Microporous and Mesoporous Materials, 2015, 205, 56-60.	2.2	9
40	In situ measurement and simulation of nano-magnetite mobility in porous media subject to transient salinity. Nanoscale, 2015, 7, 1047-1057.	2.8	12
41	Experimental Identification of Diffusive Coupling Using 2D NMR. Physical Review Letters, 2014, 113, 235503.	2.9	22
42	Influence of bone marrow composition on measurements of trabecular microstructure using decay due to diffusion in the internal field MRI: Simulations and clinical studies. Magnetic Resonance in Medicine, 2014, 72, 1499-1508.	1.9	10
43	Chirped CPMG for well-logging NMR applications. Journal of Magnetic Resonance, 2014, 242, 197-202.	1.2	27
44	Two-dimensional diffusion time correlation experiment using a single direction gradient. Journal of Magnetic Resonance, 2014, 244, 6-11.	1.2	11
45	Probing Maltene–Asphaltene Interaction in Crude Oil by Means of NMR Relaxation. Energy & Fuels, 2014, 28, 2395-2401.	2.5	23
46	An ultra-broadband low-frequency magnetic resonance system. Journal of Magnetic Resonance, 2014, 242, 113-125.	1.2	39
47	Adsorption of Superparamagnetic Iron Oxide Nanoparticles on Silica and Calcium Carbonate Sand. Langmuir, 2014, 30, 784-792.	1.6	24
48	Scalable NMR spectroscopy with semiconductor chips. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11955-11960.	3.3	102
49	Dispersion of <i>T</i> ₁ and <i>T</i> ₂ Nuclear Magnetic Resonance Relaxation in Crude Oils. ChemPhysChem, 2014, 15, 2676-2681.	1.0	21
50	Coaxial probe for nuclear magnetic resonance diffusion and relaxation correlation experiments. Journal of Applied Physics, 2014, 115, .	1.1	1
51	Two-dimensional NQR using ultra-broadband electronics. Journal of Magnetic Resonance, 2014, 240, 16-23.	1.2	12
52	Zinc oxide nanoparticles catalyze rapid hydrolysis of poly(lactic acid) at low temperatures. Journal of Applied Polymer Science, 2014, 131, .	1.3	37
53	An extremely broadband low-frequency MR system. Microporous and Mesoporous Materials, 2013, 178, 53-55.	2.2	10
54	Axis-matching excitation pulses for CPMG-like sequences in inhomogeneous fields. Journal of Magnetic Resonance, 2013, 237, 1-10.	1.2	14

#	Article	IF	CITATIONS
55	An NMR study of porous rock and biochar containing organic material. Microporous and Mesoporous Materials, 2013, 178, 94-98.	2.2	50
56	Use of NMR logging to obtain estimates of hydraulic conductivity in the High Plains aquifer, Nebraska, USA. Water Resources Research, 2013, 49, 1871-1886.	1.7	68
57	Broadband CPMG sequence with short composite refocusing pulses. Journal of Magnetic Resonance, 2013, 230, 64-75.	1.2	25
58	Magnetic Resonance of Porous Media (MRPM): A perspective. Journal of Magnetic Resonance, 2013, 229, 12-24.	1.2	143
59	Focus on the physics of magnetic resonance on porous media. New Journal of Physics, 2012, 14, 055017.	1.2	12
60	Stability of Superparamagnetic Iron Oxide Nanoparticles at Different pH Values: Experimental and Theoretical Analysis. Langmuir, 2012, 28, 6246-6255.	1.6	51
61	Field experiment provides ground truth for surface nuclear magnetic resonance measurement. Geophysical Research Letters, 2012, 39, .	1.5	55
62	Magnetic Resonance Characterization of Porous Media Using Diffusion through Internal Magnetic Fields. Materials, 2012, 5, 590-616.	1.3	16
63	Transformer-coupled NMR probe. Journal of Magnetic Resonance, 2012, 216, 128-133.	1.2	6
64	Quantitative measurements of injections into porous media with contrast based MRI. Journal of Magnetic Resonance, 2011, 212, 133-138.	1.2	4
65	Magnetic field anisotropy based MR tractography. Journal of Magnetic Resonance, 2011, 212, 386-393.	1.2	8
66	Acceleration of multi-dimensional propagator measurements with compressed sensing. Journal of Magnetic Resonance, 2011, 213, 166-170.	1.2	20
67	MRI of trabecular bone using a decay due to diffusion in the internal field contrast imaging sequence. Journal of Magnetic Resonance Imaging, 2011, 34, 361-371.	1.9	7
68	Low-frequency NMR with a non-resonant circuit. Journal of Magnetic Resonance, 2011, 210, 69-74.	1.2	16
69	Understanding NMR spectral uncertainty. Journal of Magnetic Resonance, 2010, 204, 118-123.	1.2	36
70	Recent Progress of Nuclear Magnetic Resonance Applications in Sandstones and Carbonate Rocks. Vadose Zone Journal, 2010, 9, 828-834.	1.3	16
71	Highâ€resolution MRI of internal field diffusionâ€weighting in trabecular bone. NMR in Biomedicine, 2009, 22, 436-448.	1.6	27
72	A 2D NMR method to characterize granular structure of dairy products. Progress in Nuclear Magnetic Resonance Spectroscopy, 2009, 55, 324-334.	3.9	49

#	Article	IF	CITATIONS
73	Visualization of inhomogeneous local magnetic field gradient due to susceptibility contrast. Journal of Magnetic Resonance, 2009, 198, 88-93.	1.2	26
74	Generating Heterogeneity Spectra from Spatially Resolved Measurements. Mathematical Geosciences, 2009, 41, 721-735.	1.4	2
75	Quantifying uncertainty in NMR spectra using Monte Carlo inversion. Journal of Magnetic Resonance, 2009, 196, 54-60.	1.2	83
76	Study of Asphaltene Nanoaggregation by Nuclear Magnetic Resonance (NMR). Energy & Fuels, 2009, 23, 1189-1193.	2.5	165
77	Critical Nanoaggregate Concentration of Asphaltenes by Direct-Current (DC) Electrical Conductivity. Energy & Fuels, 2009, 23, 1201-1208.	2.5	113
78	Diffusionâ€based MR methods for bone structure and evolution. Magnetic Resonance in Medicine, 2008, 59, 28-39.	1.9	24
79	Inverting MRI measurements to heterogeneity spectra. Journal of Magnetic Resonance, 2008, 193, 243-250.	1.2	11
80	Magnetic resonance in porous media: Recent progress. Journal of Chemical Physics, 2008, 128, 052212.	1.2	64
81	Two-Dimensional NMR of Diffusion Systems. Physical Review Letters, 2008, 100, 248002.	2.9	56
82	Fluorescence Methods for Downhole Fluid Analysis of Heavy Oil Emulsions. Journal of Dispersion Science and Technology, 2008, 29, 171-183.	1.3	10
83	Quantifying spatial heterogeneity from images. New Journal of Physics, 2008, 10, 125012.	1.2	5
84	NMR Measurement of the Magnetic Field Correlation Function in Porous Media. Physical Review Letters, 2008, 100, 025501.	2.9	12
85	Characterization of Internal Magnetic Fields in Porous Media. , 2008, , .		0
86	The Heterogeneity Spectrum: A Method for Quantifying the Extent of Spatial Heterogeneity as a Function of Length Scale in Complex Materials. , 2008, , .		0
87	Molecular Composition and Dynamics of Oils from Diffusion Measurements. , 2007, , 279-299.		22
88	Rapid measurement of three-dimensional diffusion tensor. Journal of Chemical Physics, 2007, 126, 154501.	1.2	11
89	Multipleâ€modulationâ€multipleâ€echo magnetic resonance. Concepts in Magnetic Resonance Part A: Bridging Education and Research, 2007, 30A, 358-377.	0.2	9
90	Novel NMR techniques for porous media research. Cement and Concrete Research, 2007, 37, 325-328.	4.6	30

#	Article	IF	CITATIONS
91	Resolution and uncertainty of Laplace inversion spectrum. Magnetic Resonance Imaging, 2007, 25, 445-448.	1.0	23
92	Dispersion measurements using time-of-flight remote detection MRI. Magnetic Resonance Imaging, 2007, 25, 449-452.	1.0	5
93	A single-scan method for measuring flow along an arbitrary direction. Journal of Magnetic Resonance, 2007, 186, 11-16.	1.2	9
94	Study of diffusion in erythrocyte suspension using internal magnetic field inhomogeneity. Journal of Magnetic Resonance, 2007, 187, 146-154.	1.2	8
95	Spatial Heterogeneity Length Scales in Carbonate Rocks. Applied Magnetic Resonance, 2007, 32, 221-231.	0.6	13
96	Porous Materials. , 2006, , 340-358.		1
97	Hardware and Methods. , 2006, , 163-183.		12
98	Multiple echo diffusion tensor acquisition technique. Magnetic Resonance Imaging, 2006, 24, 7-18.	1.0	23
99	Rapid measurement via decay-recovery decomposition: Applications in fringe field and distributed relaxation experiments. Solid State Nuclear Magnetic Resonance, 2006, 29, 232-241.	1.5	8
100	Fast imaging with the MMME sequence. Journal of Magnetic Resonance, 2006, 180, 18-28.	1.2	11
101	Quantitative characterization of food products by two-dimensional D– and – distribution functions in a static gradient. Journal of Colloid and Interface Science, 2006, 297, 303-311.	5.0	112
102	An NMR technique for rapid measurement of flow. Journal of Magnetic Resonance, 2005, 172, 31-35.	1.2	26
103	Multiple modulation multiple echoes: A one-shot method. Magnetic Resonance Imaging, 2005, 23, 301-303.	1.0	7
104	Scaling Laws for Diffusion Coefficients in Mixtures of Alkanes. Physical Review Letters, 2005, 94, 067602.	2.9	54
105	Determining the resolution of Laplace inversion spectrum. Journal of Chemical Physics, 2005, 122, 104104.	1.2	60
106	Time-of-Flight Flow Imaging Using NMR Remote Detection. Physical Review Letters, 2005, 95, 075503.	2.9	68
107	A one-shot method for measurement of diffusion. Journal of Magnetic Resonance, 2004, 170, 136-148.	1.2	50
108	Simultaneous Measurement of Diffusion along Multiple Directions. Journal of the American Chemical Society, 2004, 126, 16336-16337.	6.6	19

#	Article	IF	CITATIONS
109	Using internal magnetic fields to obtain pore size distributions of porous media. Concepts in Magnetic Resonance, 2003, 18A, 97-110.	1.3	83
110	Novel NMR techniques for porous media research. Magnetic Resonance Imaging, 2003, 21, 207-211.	1.0	11
111	A method for rapid characterization of diffusion. Journal of Magnetic Resonance, 2003, 161, 222-233.	1.2	24
112	Correlation functions for inhomogeneous magnetic field in random media with application to a dense random pack of spheres. Journal of Magnetic Resonance, 2003, 164, 154-159.	1.2	55
113	Comment on "Transverse NMR Relaxation as a Probe of Mesoscopic Structure― Physical Review Letters, 2003, 91, 029801; author reply 029802.	2.9	5
114	Manipulation of the diffusion eigenmodes in porous media. Physical Review B, 2002, 65, .	1.1	17
115	Characterization of coupled pore systems from the diffusion eigenspectrum. Journal of Chemical Physics, 2002, 117, 5361-5365.	1.2	25
116	Nonresonant Multiple Spin Echoes. Science, 2002, 297, 369-372.	6.0	9
117	What is the shape of pores in natural rocks?. Journal of Chemical Physics, 2002, 116, 8247.	1.2	35
118	Solving Fredholm integrals of the first kind with tensor product structure in 2 and 2.5 dimensions. IEEE Transactions on Signal Processing, 2002, 50, 1017-1026.	3.2	538
119	T1–T2 Correlation Spectra Obtained Using a Fast Two-Dimensional Laplace Inversion. Journal of Magnetic Resonance, 2002, 154, 261-268.	1.2	631
120	Categories of Coherence Pathways for the CPMG Sequence. Journal of Magnetic Resonance, 2002, 157, 82-91.	1.2	66
121	The behavior of diffusion eigenmodes in the presence of internal magnetic field in porous media. Journal of Chemical Physics, 2001, 114, 9120-9124.	1.2	32
122	Pore sizes and pore connectivity in rocks using the effect of internal field. Magnetic Resonance Imaging, 2001, 19, 417-421.	1.0	34
123	Spin polarization-induced nuclear Overhauser effect: An application of spin-polarized xenon and helium. Concepts in Magnetic Resonance, 2000, 12, 6-20.	1.3	33
124	Determining Pore Sizes Using an Internal Magnetic Field. Journal of Magnetic Resonance, 2000, 143, 397-401.	1.2	39
125	Determining multiple length scales in rocks. Nature, 2000, 406, 178-181.	13.7	229
126	Detection of the High Eigenmodes of Spin Diffusion in Porous Media. Physical Review Letters, 2000, 85, 3878-3881.	2.9	35

#	Article	IF	CITATIONS
127	Reduction of Spin Polarization near Landau Filling Factorν=3in GaAs/AlGaAs Quantum Wells. Physical Review Letters, 1999, 82, 2768-2771.	2.9	17
128	Study of Xenon Binding in Cryptophane-A Using Laser-Induced NMR Polarization Enhancement. Journal of the American Chemical Society, 1999, 121, 3502-3512.	6.6	89
129	Imaging of laser-polarized solid xenon. Solid State Nuclear Magnetic Resonance, 1998, 10, 247-250.	1.5	5
130	Effects of diffusion on magnetic resonance imaging of laser-polarized xenon gas. Journal of Chemical Physics, 1998, 108, 6233-6239.	1.2	35
131	Selective Enhancement of NMR Signals forα-Cyclodextrin with Laser-Polarized Xenon. Angewandte Chemie International Edition in English, 1997, 36, 2368-2370.	4.4	67
132	Selektive NMR‣ignalverstäkung bei α yclodextrin durch laserpolarisiertes Xenon. Angewandte Chemie, 1997, 109, 2464-2466.	1.6	9
133	SQUID detected NMR of laser-polarized xenon at 4.2 K and at frequencies down to 200 Hz. Chemical Physics Letters, 1997, 272, 245-249.	1.2	25
134	Enhancement of Solution NMR and MRI with Laser-Polarized Xenon. Science, 1996, 271, 1848-1851.	6.0	319
135	Vortex fluctuation effects to 1 /4SR linewidth in high-temperature superconductor. Physica C: Superconductivity and Its Applications, 1995, 241, 187-190.	0.6	5
136	63Cu NMR in heavily doped La2CuO4. Journal of Physics and Chemistry of Solids, 1995, 56, 1939-1940.	1.9	7
137	Two Dimensional89Y NMR Study of Vortex Dynamics in YBa2Cu3O7â ´î´. Physical Review Letters, 1995, 75, 2008-2010.	2.9	14
138	Low-temperature vortex dynamics in a high-temperature superconductor. Physical Review B, 1994, 50, 16570-16573.	1.1	6
139	Application of spin-spin relaxation to measurement of surface area and pore size distributions in a hydrating cement paste. Magnetic Resonance Imaging, 1994, 12, 169-173.	1.0	174
140	Surface magnetic relaxation in cement pastes. Magnetic Resonance Imaging, 1994, 12, 207-208.	1.0	19
141	Low temperature fluctuations of vortices in layered superconductors. Physical Review Letters, 1993, 70, 3127-3130.	2.9	43
142	Pt195spin dynamics and Knight shift in single crystals ofUPt3. Physical Review B, 1993, 48, 7392-7398.	1.1	32
143	Spin susceptibility in theLa2â^'xSrxCuO4system from underdoped to overdoped regimes. Physical Review Letters, 1993, 70, 3131-3134.	2.9	37
144	Determination of magnetic penetration depth from saddle-point field analysis inTl2Ba2Ca2Cu3O10+δ. Physical Review B, 1992, 45, 4945-4951.	1.1	12

#	Article	IF	CITATIONS
145	Magnetic susceptibility anisotropy of grain-aligned oxygen-deficient Y1Ba2Cu3Ox (6.46⪕x⪕6.98). Physica C: Superconductivity and Its Applications, 1992, 201, 95-102.	0.6	11
146	Electronic spin susceptibility in superconducting YBa2Cu3O7 from nuclear spin-spin coupling. Physica C: Superconductivity and Its Applications, 1992, 191, 131-136.	0.6	6
147	Two electronically distinct copper sites in lanthanum strontium copper oxide (La2-xSrxCuO4delta.) compounds for 0.10 .ltoreq. x .ltoreq. 0.20. Chemistry of Materials, 1991, 3, 672-677.	3.2	15
148	Local symmetry of copper sites inLa2â^'xSrxCuO4. Physical Review B, 1991, 44, 7159-7162.	1.1	23
149	Magnetic-flux-lattice anisotropy ofTl2Ba2Ca2Cu3O10+Î byTl2O5nuclear magnetic resonance. Physical Review B, 1991, 44, 914-916.	1.1	14
150	Korringa behavior for Cu(2) in YBa2Cu3O6.98. Physica B: Condensed Matter, 1990, 165-166, 1301-1302.	1.3	1
151	Thallium magnetic resonance in superconductingTl2Ba2Ca2Cu3O10+l´. Physical Review B, 1989, 40, 817-820.	1.1	17
152	Multiple-Echo Magnetic Resonance. , 0, , 31-48.		0