lichun Dai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4030954/publications.pdf

Version: 2024-02-01

35	2,155	279798	361022
papers	citations	h-index	g-index
35	35	35	2315
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Effect of biochar-derived DOM on the interaction between Cu(II) and biochar prepared at different pyrolysis temperatures. Journal of Hazardous Materials, 2022, 421, 126739.	12.4	45
2	Current status and future prospective of bio-ethanol industry in China. Renewable and Sustainable Energy Reviews, 2021, 145, 111079.	16.4	43
3	Valorization of oxytetracycline fermentation residue through torrefaction into a versatile and recyclable adsorbent for water pollution control. Journal of Environmental Chemical Engineering, 2021, 9, 105397.	6.7	13
4	Tuning oxygenated functional groups on biochar for water pollution control: A critical review. Journal of Hazardous Materials, 2021, 420, 126547.	12.4	101
5	Bioenergy from dairy manure: technologies, challenges and opportunities. Science of the Total Environment, 2021, 790, 148199.	8.0	23
6	Interaction between chlortetracycline and calcium-rich biochar: Enhanced removal by adsorption coupled with flocculation. Chemical Engineering Journal, 2020, 382, 122705.	12.7	66
7	Post-engineering of biochar via thermal air treatment for highly efficient promotion of uranium(VI) adsorption. Bioresource Technology, 2020, 298, 122576.	9.6	53
8	Regulation of nitrogen dynamics at the sediment–water interface during HAB degradation and subsequent reoccurrence. RSC Advances, 2020, 10, 13480-13488.	3.6	7
9	Oxygen-rich biochar from torrefaction: A versatile adsorbent for water pollution control. Bioresource Technology, 2019, 294, 122142.	9.6	44
10	Procedural growth of fungal hyphae/Fe3O4/graphene oxide as ordered-structure composites for water purification. Chemical Engineering Journal, 2019, 355, 777-783.	12.7	59
11	Interactions between suspended particulate matter and algal cells contributed to the reconstruction of phytoplankton communities in turbulent waters. Water Research, 2019, 149, 251-262.	11.3	53
12	Bioassembly of fungal hypha/graphene oxide aerogel as high performance adsorbents for U(VI) removal. Chemical Engineering Journal, 2018, 347, 407-414.	12.7	92
13	Bioassembly of fungal hyphae/carbon nanotubes composite as a versatile adsorbent for water pollution control. Chemical Engineering Journal, 2018, 339, 214-222.	12.7	88
14	Application of sequential extraction analysis to Pb(II) recovery by zerovalent iron-based particles. Journal of Hazardous Materials, 2018, 351, 138-146.	12.4	18
15	Bioassembly of fungal hyphae/graphene oxide composite as high performance adsorbents for U(VI) removal. Applied Surface Science, 2018, 458, 226-235.	6.1	21
16	Calcium-rich biochar from crab shell: An unexpected super adsorbent for dye removal. Bioresource Technology, 2018, 267, 510-516.	9.6	187
17	Bio-ethanol production by Zymomonas mobilis using pretreated dairy manure as a carbon and nitrogen source. RSC Advances, 2017, 7, 3768-3779.	3.6	13
18	Calcium-rich biochar from the pyrolysis of crab shell for phosphorus removal. Journal of Environmental Management, 2017, 198, 70-74.	7.8	127

#	Article	IF	CITATIONS
19	A synergistic combination of nutrient reclamation from manure and resultant hydrochar upgradation by acid-supported hydrothermal carbonization. Bioresource Technology, 2017, 243, 860-866.	9.6	62
20	Replacing process water and nitrogen sources with biogas slurry during cellulosic ethanol production. Biotechnology for Biofuels, 2017, 10, 236.	6.2	5
21	Integrated Methane and Ethanol Production from Livestock Manure and Soybean Straw. BioResources, 2017, 12, .	1.0	9
22	Engineered Zymomonas mobilis for salt tolerance using EZ-Tn5-based transposon insertion mutagenesis system. Microbial Cell Factories, 2016, 15, 101.	4.0	24
23	Biochar: a potential route for recycling of phosphorus in agricultural residues. GCB Bioenergy, 2016, 8, 852-858.	5.6	61
24	Using global transcription machinery engineering (gTME) to improve ethanol tolerance of Zymomonas mobilis. Microbial Cell Factories, 2016, 15, 4.	4.0	63
25	Complete genome sequence of strain Lentibacillus amyloliquefaciens LAM0015T isolated from saline sediment. Journal of Biotechnology, 2016, 220, 88-89.	3.8	2
26	Adaptive laboratory evolution of ethanologenic Zymomonas mobilis strain tolerant to furfural and acetic acid inhibitors. Applied Microbiology and Biotechnology, 2015, 99, 5739-5748.	3.6	72
27	Immobilization of phosphorus in cow manure during hydrothermal carbonization. Journal of Environmental Management, 2015, 157, 49-53.	7.8	113
28	Improving furfural tolerance of Zymomonas mobilis by rewiring a sigma factor RpoD protein. Applied Microbiology and Biotechnology, 2015, 99, 5363-5371.	3.6	44
29	The effects of red soil in removing phosphorus from water column and reducing phosphorus release from sediment in Lake Taihu. Water Science and Technology, 2014, 69, 1052-1058.	2.5	18
30	Zymomonas mobilis: a novel platform for future biorefineries. Biotechnology for Biofuels, 2014, 7, 101.	6.2	183
31	Engineered hydrochar composites for phosphorus removal/recovery: Lanthanum doped hydrochar prepared by hydrothermal carbonization of lanthanum pretreated rice straw. Bioresource Technology, 2014, 161, 327-332.	9.6	111
32	Direct ethanol production from dextran industrial waste water by Zymomonas mobilis. Korean Journal of Chemical Engineering, 2014, 31, 2003-2007.	2.7	10
33	Bamboo: A new source of carbohydrate for biorefinery. Carbohydrate Polymers, 2014, 111, 645-654.	10.2	109
34	Impact of Suspended Inorganic Particles on Phosphorus Cycling in the Yellow River (China). Environmental Science & Environment	10.0	99
35	Reducing the Recruitment of Sedimented Algae and Nutrient Release into the Overlying Water Using Modified Soil/Sand Flocculation-Capping in Eutrophic Lakes. Environmental Science & Environmental Sci	10.0	117