
F Seniha Güner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4030617/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photo-crosslinkable chitosan and gelatin-based nanohybrid bioinks for extrusion-based 3D-bioprinting. International Journal of Polymeric Materials and Polymeric Biomaterials, 2023, 72, 1-12.	3.4	9
2	Molecular dynamics simulations can predict the optimum drug loading amount in pectin hydrogels for controlled release. Materials Today Communications, 2022, 31, 103268.	1.9	8
3	An Industrial Case for Polypropylene Nanocomposite Foams: Lightweight, Soundproof Exterior Automotive Parts. Polymers, 2022, 14, 1192.	4.5	7
4	<scp>Highâ€performance</scp> supercapacitor electrolytes based on <scp>highâ€moleâ€ratio</scp> phosphoric acid/lauryl ether surfactant liquid crystalline gel. International Journal of Energy Research, 2022, 46, 19980-19991.	4.5	2
5	Dual effect of procaine-loaded pectin hydrogels: pain management and in vitro wound healing. Polymer Bulletin, 2021, 78, 2227-2250.	3.3	10
6	2-Thiobarbituric acid addition improves structural integrity and controlled drug delivery of biocompatible pectin hydrogels. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 703-711.	3.4	12
7	pH-sensitive castor oil/PEG-based polyurethane films for drug delivery. Journal of Drug Delivery Science and Technology, 2021, 61, 102160.	3.0	20
8	Fmoc-PEG Coated Single-Wall Carbon Nanotube Carriers by Non-covalent Functionalization: An Experimental and Molecular Dynamics Study. Frontiers in Bioengineering and Biotechnology, 2021, 9, 648366.	4.1	6
9	Thermoresponsive polyurethane films for packaging applications: Effects of film formulation on their properties. Food Packaging and Shelf Life, 2021, 29, 100695.	7.5	4
10	Elucidating doxycycline loading and release performance of imprinted hydrogels with different cross-linker concentrations: a computational and experimental study. Journal of Polymer Research, 2021, 28, 1.	2.4	4
11	Synthesis of ultraviolet (UV)-curable water-borne polyurethane acrylate binders and comparison of their performance for pigment printing on synthetic leather. International Journal of Clothing Science and Technology, 2020, 33, 270-288.	1.1	0
12	Theophyllineâ€loaded pectinâ€based hydrogels. II. Effect of concentration of initial pectin solution, crosslinker type and cation concentration of external solution on drug release profile. Journal of Applied Polymer Science, 2019, 136, 48155.	2.6	18
13	Lowâ€methoxyl pectin–zeolite hydrogels controlling drug release promote <i>in vitro</i> wound healing. Journal of Applied Polymer Science, 2019, 136, 47640.	2.6	46
14	A multiscale investigation on controlling bovine serum albumin adsorption onto polyurethane films. Journal of Applied Polymer Science, 2018, 135, 45669.	2.6	4
15	A computational and experimental approach to develop minocycline-imprinted hydrogels and determination of their drug delivery performances. Journal of Polymer Research, 2018, 25, 1.	2.4	15
16	Theophyllineâ€loaded pectinâ€based hydrogels. I. Effect of medium p <scp>H</scp> and preparation conditions on drug release profile. Journal of Applied Polymer Science, 2018, 135, 46731.	2.6	17
17	Noncovalent Pyrene-Polyethylene Glycol Coatings of Carbon Nanotubes Achieve in Vitro Biocompatibility. Langmuir, 2018, 34, 12071-12082.	3.5	24
18	Cytotoxicity of doxrubicin loaded single-walled carbon nanotubes. Molecular Biology Reports, 2018, 45, 523-531.	2.3	17

F Seniha Güner

#	Article	IF	CITATIONS
19	Castor oil and PEG-based shape memory polyurethane films: effect of chain extender amount on some polymer properties and performance. Turkish Journal of Chemistry, 2018, 42, 1161-1173.	1.2	5
20	Melt flow properties of graphite nanoplatelets-filled polypropylene. Journal of Composite Materials, 2017, 51, 2793-2804.	2.4	8
21	Investigation of photoinduced polymerization of doxycycline-imprinted hydrogels: effect of template on initiator reactivity, conversion, and reaction rate. Turkish Journal of Chemistry, 2017, 41, 862-873.	1.2	3
22	Synthesis, Characterization and O ₂ Permeability of Shape Memory Polyurethane Films for Fresh Produce Packaging. Packaging Technology and Science, 2016, 29, 415-427.	2.8	13
23	Adhesion strength behaviour of plasma pre-treated and laminated polypropylene nonwoven fabrics using acrylic and polyurethane-based adhesives. Journal of Industrial Textiles, 2014, 43, 396-414.	2.4	18
24	Physical and surface properties of polyurethane hydrogels in relation with their chemical structure. Polymer Engineering and Science, 2014, 54, 1182-1191.	3.1	21
25	A comprehensive 3D analysis of polymer flow through a conical spiral extrusion die. Fibers and Polymers, 2014, 15, 84-90.	2.1	7
26	Castor oil and PEGâ€based shape memory polyurethane films for biomedical applications. Journal of Applied Polymer Science, 2014, 131, .	2.6	19
27	Improving hydrophobicity on polyurethane-based synthetic leather through plasma polymerization for easy care effect. Journal of Coatings Technology Research, 2013, 10, 549-558.	2.5	14
28	Which is more effective for protein adsorption: surface roughness, surface wettability or swelling? Case study of polyurethane films prepared from castor oil and poly(ethylene glycol). Polymer International, 2013, 62, 1202-1209.	3.1	63
29	Preparation of polyurethane/hectorite, polyurethane/montmorillonite, and polyurethane/laponite nanocomposites without organic modifiers. Journal of Applied Polymer Science, 2010, 116, 832-837.	2.6	7
30	Antibacterial oilâ€based polyurethane films for wound dressing applications. Journal of Applied Polymer Science, 2010, 115, 1347-1357.	2.6	39
31	Polyurethane–zinc borate composites with high oxidative stability and flame retardancy. Polymer Degradation and Stability, 2009, 94, 1072-1075.	5.8	50
32	Fatty acid-based polyurethane films for wound dressing applications. Journal of Materials Science: Materials in Medicine, 2009, 20, 421-431.	3.6	59
33	Monitoring of oil-based polyurethane synthesis by FTIR-ATR. Polymer Testing, 2009, 28, 773-779.	4.8	30
34	Synthesis of triglyceride-based urethane macromers and their use in copolymerization. Progress in Organic Coatings, 2008, 63, 365-371.	3.9	16
35	Fréquences de la consommation de substances psychoactives et de la psychopathologie chez de jeunes adultes en première année d'Université. Annales Medico-Psychologiques, 2007, 165, 714-718.	0.4	6
36	Copolyimide Membranes for Gas Separation. Desalination, 2006, 200, 259-261.	8.2	15

F Seniha Güner

#	Article	IF	CITATIONS
37	Polymers from triglyceride oils. Progress in Polymer Science, 2006, 31, 633-670.	24.7	667
38	Production of Viscosity Improvers for PVC. Macromolecular Symposia, 2005, 228, 237-244.	0.7	2
39	Investigation of rheological and collodial properties of bentonitic clay dispersion in the presence of a cationic surfactant. Progress in Organic Coatings, 2005, 54, 28-33.	3.9	20
40	The usage of linseed oil-based polyurethanes as a rheological modifier. Journal of Applied Polymer Science, 2005, 98, 1032-1035.	2.6	7
41	Polyurethane Films for Wound Dressing Applications. Macromolecular Symposia, 2005, 228, 177-184.	0.7	40
42	Flow behavior of oil-modified polymer solutions. Progress in Organic Coatings, 2004, 50, 172-178.	3.9	20
43	The effects of anhydride type and amount on viscosity and film properties of alkyd resin. Progress in Organic Coatings, 2004, 51, 273-279.	3.9	30
44	Some empirical equations for oxypolymerization of linseed oil. Progress in Organic Coatings, 2004, 51, 365-371.	3.9	19
45	Drying and semidrying oil macromonomers. III. Styrenation of sunflower and linseed oils. Journal of Applied Polymer Science, 2003, 88, 2373-2376.	2.6	33
46	Study of film properties of some urethane oils. Journal of Coatings Technology, 2002, 74, 55-59.	0.7	39
47	Wandgleitverhalten vonAluminiumoxid-Siliconöl-Pastenbei der Extrusion. Chemie-Ingenieur-Technik, 2000, 72, 714-718.	0.8	1
48	Styrenation of castor oil and linseed oil by macromer method. Macromolecular Materials and Engineering, 2000, 283, 15-20.	3.6	49
49	Styrenation of triglyceride oils by macromonomer technique. Journal of Coatings Technology, 2000, 72, 107-110.	0.7	30
50	Heavy metal removal by ion exchanger based on hydroxyethyl cellulose. Journal of Applied Polymer Science, 1999, 74, 3501-3506.	2.6	32
51	Heavy metal removal by ion exchanger based on hydroxyethyl cellulose. Journal of Applied Polymer Science, 1999, 74, 3501.	2.6	Ο
52	Anchovy oil thermal polymerization kinetics. JAOCS, Journal of the American Oil Chemists' Society, 1997, 74, 1525-1529.	1.9	10
53	Castor oil dehydration kinetics. JAOCS, Journal of the American Oil Chemists' Society, 1997, 74, 409-412.	1.9	11
54	Esterification of oleic acid with glycerol in the presence of sulfated iron oxide catalyst. JAOCS, Journal of the American Oil Chemists' Society, 1996, 73, 347-351.	1.9	33

#	Article	IF	CITATIONS
55	Kinetics of Esterification Reaction between Glycerol and Oleic Acid in the Presence of Pyridine. Lipid - Fett, 1995, 97, 347-351.	0.4	2
56	Polyurethanes: Surface Protein Adsorption. , 0, , 6724-6742.		0
57	Preparation and Determination of In Vivo and In Vitro Performance of Doxycycline Imprinted Contact Lenses for Corneal Neovascularization Treatment. Journal of the Turkish Chemical Society, Section A: Chemistry, 0, , 1185-1192.	1.1	1