
Michela Janni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4030442/publications.pdf Version: 2024-02-01

MICHELA JANNI

#	Article	IF	CITATIONS
1	Molecular and genetic bases of heat stress responses in crop plants and breeding for increased resilience and productivity. Journal of Experimental Botany, 2020, 71, 3780-3802.	4.8	186
2	Increasing the amylose content of durum wheat through silencing of the SBEIIagenes. BMC Plant Biology, 2010, 10, 144.	3.6	151
3	The Ectopic Expression of a Pectin Methyl Esterase Inhibitor Increases Pectin Methyl Esterification and Limits Fungal Diseases in Wheat. Molecular Plant-Microbe Interactions, 2011, 24, 1012-1019.	2.6	139
4	The Expression of a Bean PGIP in Transgenic Wheat Confers Increased Resistance to the Fungal Pathogen <i>Bipolaris sorokiniana</i> . Molecular Plant-Microbe Interactions, 2008, 21, 171-177.	2.6	81
5	An in vivo biosensing, biomimetic electrochemical transistor with applications in plant science and precision farming. Scientific Reports, 2017, 7, 16195.	3.3	67
6	<i>In Vivo</i> Phenotyping for the Early Detection of Drought Stress in Tomato. Plant Phenomics, 2019, 2019, 6168209.	5.9	60
7	Heat in Wheat: Exploit Reverse Genetic Techniques to Discover New Alleles Within the Triticum durum sHsp26 Family. Frontiers in Plant Science, 2018, 9, 1337.	3.6	38
8	Characterization of expressed Pgip genes in rice and wheat reveals similar extent of sequence variation to dicot PGIPs and identifies an active PGIP lacking an entire LRR repeat. Theoretical and Applied Genetics, 2006, 113, 1233-1245.	3.6	33
9	Amylose content is not affected by overexpression of the <i>Wxâ€B1</i> gene in durum wheat. Plant Breeding, 2012, 131, 700-706.	1.9	33
10	Development of an In Vivo Sensor to Monitor the Effects of Vapour Pressure Deficit (VPD) Changes to Improve Water Productivity in Agriculture. Sensors, 2019, 19, 4667.	3.8	33
11	Can High Throughput Phenotyping Help Food Security in the Mediterranean Area?. Frontiers in Plant Science, 2019, 10, 15.	3.6	30
12	Single seed descent: a tool to exploit durum wheat (Triticum durum Desf.) genetic resources. Genetic Resources and Crop Evolution, 2015, 62, 1029-1035.	1.6	19
13	A European perspective on opportunities and demands for field-based crop phenotyping. Field Crops Research, 2022, 276, 108371.	5.1	17
14	The down-regulation of the genes encoding Isoamylase 1 alters the starch composition of the durum wheat grain. Plant Science, 2016, 252, 230-238.	3.6	14
15	Shaping Durum Wheat for the Future: Gene Expression Analyses and Metabolites Profiling Support the Contribution of BCAT Genes to Drought Stress Response. Frontiers in Plant Science, 2020, 11, 891.	3.6	14
16	A Biomimetic, Biocompatible OECT Sensor for the Realâ€īme Measurement of Concentration and Saturation of lons in Plant Sap. Advanced Electronic Materials, 2022, 8, .	5.1	14
17	A LTR copia retrotransposon and Mutator transposons interrupt Pgip genes in cultivated and wild wheats. Theoretical and Applied Genetics, 2008, 116, 859-867.	3.6	12
18	Survey and new insights in the application of <scp>PCR</scp> â€based molecular markers for identification of <scp>HMW</scp> â€ <scp>GS</scp> at the <i>Gluâ€B1</i> locus in durum and bread wheat. Plant Breeding, 2017, 136, 467-473.	1.9	12

Michela Janni

#	Article	IF	CITATIONS
19	Gene-ecology of durum wheat HMW glutenin reflects their diffusion from the center of origin. Scientific Reports, 2018, 8, 16929.	3.3	11
20	Towards In Vivo Monitoring of lons Accumulation in Trees: Response of an in Planta Organic Electrochemical Transistor Based Sensor to Water Flux Density, Light and Vapor Pressure Deficit Variation. Applied Sciences (Switzerland), 2021, 11, 4729.	2.5	8
21	Combining Precision Viticulture Technologies and Economic Indices to Sustainable Water Use Management. Water (Switzerland), 2022, 14, 1493.	2.7	6
22	The Use of Near-Infrared Imaging (NIR) as a Fast Non-Destructive Screening Tool to Identify Drought-Tolerant Wheat Genotypes. Agriculture (Switzerland), 2022, 12, 537.	3.1	5
23	Introducing State Variables in Organic Electrochemical Transistors With Application to Biophysical Systems. IEEE Sensors Journal, 2019, 19, 11753-11758.	4.7	4
24	Contribution of Genetic Resources to Grain Storage Protein Composition and Wheat Quality. , 2020, , 39-72.		3
25	First production of wild hemmer (Triticum turgidum ssp. dicoccoides) transgenic plants. Plant Cell, Tissue and Organ Culture, 2018, 132, 461-467.	2.3	2