
Derek Morris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4030181/publications.pdf Version: 2024-02-01

NEDER MODDIS

#	Article	IF	CITATIONS
1	Biological insights from 108 schizophrenia-associated genetic loci. Nature, 2014, 511, 421-427.	13.7	6,934
2	Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature, 2009, 460, 748-752.	13.7	4,345
3	Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nature Genetics, 2013, 45, 984-994.	9.4	2,067
4	Genome-wide association study identifies five new schizophrenia loci. Nature Genetics, 2011, 43, 969-976.	9.4	1,758
5	Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nature Genetics, 2013, 45, 1150-1159.	9.4	1,395
6	Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature, 2008, 455, 237-241.	13.7	1,387
7	Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nature Genetics, 2011, 43, 977-983.	9.4	1,283
8	Genome-wide association study identifies 30 loci associated with bipolar disorder. Nature Genetics, 2019, 51, 793-803.	9.4	1,191
9	Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nature Genetics, 2008, 40, 1056-1058.	9.4	1,102
10	Analysis of shared heritability in common disorders of the brain. Science, 2018, 360, .	6.0	1,085
11	Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nature Genetics, 2008, 40, 1053-1055.	9.4	977
12	Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders. Cell, 2019, 179, 1469-1482.e11.	13.5	935
13	Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature, 2022, 604, 502-508.	13.7	929
14	Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence. Nature Genetics, 2018, 50, 912-919.	9.4	893
15	Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nature Genetics, 2017, 49, 27-35.	9.4	838
16	Common genetic variants influence human subcortical brain structures. Nature, 2015, 520, 224-229.	13.7	772
17	The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging and Behavior, 2014, 8, 153-182.	1.1	696
18	Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nature Genetics, 2021, 53, 817-829.	9.4	629

#	Article	IF	CITATIONS
19	Cortical Brain Abnormalities in 4474 Individuals With Schizophrenia and 5098 Control Subjects via the Enhancing Neuro Imaging Genetics Through Meta Analysis (ENIGMA) Consortium. Biological Psychiatry, 2018, 84, 644-654.	0.7	627
20	Identification of common variants associated with human hippocampal and intracranial volumes. Nature Genetics, 2012, 44, 552-561.	9.4	594
21	Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function. Nature Communications, 2018, 9, 2098.	5.8	484
22	The genetic architecture of the human cerebral cortex. Science, 2020, 367, .	6.0	450
23	Silver nanoparticles in the environment: Sources, detection and ecotoxicology. Science of the Total Environment, 2017, 575, 231-246.	3.9	412
24	De novo mutations in schizophrenia implicate chromatin remodeling and support a genetic overlap with autism and intellectual disability. Molecular Psychiatry, 2014, 19, 652-658.	4.1	332
25	Rare coding variants in ten genes confer substantial risk for schizophrenia. Nature, 2022, 604, 509-516.	13.7	326
26	Duplications of the neuropeptide receptor gene VIPR2 confer significant risk for schizophrenia. Nature, 2011, 471, 499-503.	13.7	296
27	Translation of 5′ leaders is pervasive in genes resistant to elF2 repression. ELife, 2015, 4, e03971.	2.8	294
28	Fine mapping of ZNF804A and genome-wide significant evidence for its involvement in schizophrenia and bipolar disorder. Molecular Psychiatry, 2011, 16, 429-441.	4.1	250
29	Novel genetic loci associated with hippocampal volume. Nature Communications, 2017, 8, 13624.	5.8	250
30	Genome-wide significant associations in schizophrenia to ITIH3/4, CACNA1C and SDCCAG8, and extensive replication of associations reported by the Schizophrenia PGC. Molecular Psychiatry, 2013, 18, 708-712.	4.1	216
31	Novel genetic loci underlying human intracranial volume identified through genome-wide association. Nature Neuroscience, 2016, 19, 1569-1582.	7.1	213
32	Molecular pathways involved in neuronal cell adhesion and membrane scaffolding contribute to schizophrenia and bipolar disorder susceptibility. Molecular Psychiatry, 2011, 16, 286-292.	4.1	195
33	GWAS meta-analysis reveals novel loci and genetic correlates for general cognitive function: a report from the COGENT consortium. Molecular Psychiatry, 2017, 22, 336-345.	4.1	194
34	Molecular genetic evidence for overlap between general cognitive ability and risk for schizophrenia: a report from the Cognitive Genomics consorTium (COGENT). Molecular Psychiatry, 2014, 19, 168-174.	4.1	178
35	Evidence that duplications of 22q11.2 protect against schizophrenia. Molecular Psychiatry, 2014, 19, 37-40.	4.1	163
36	Genome-wide Comparative Analysis of Atopic Dermatitis and Psoriasis Gives Insight into Opposing Genetic Mechanisms. American Journal of Human Genetics, 2015, 96, 104-120.	2.6	163

#	Article	IF	CITATIONS
37	Evidence that interaction between neuregulin 1 and its receptor erbB4 increases susceptibility to schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2006, 141B, 96-101.	1.1	162
38	Excess of rare novel loss-of-function variants in synaptic genes in schizophrenia and autism spectrum disorders. Molecular Psychiatry, 2014, 19, 872-879.	4.1	160
39	Universal, robust, highly quantitative SNP allele frequency measurement in DNA pools. Human Genetics, 2002, 110, 471-478.	1.8	159
40	Delineating the genetic heterogeneity of ALS using targeted high-throughput sequencing. Journal of Medical Genetics, 2013, 50, 776-783.	1.5	151
41	Dense genotyping of immune-related susceptibility loci reveals new insights into the genetics of psoriatic arthritis. Nature Communications, 2015, 6, 6046.	5.8	149
42	Human subcortical brain asymmetries in 15,847 people worldwide reveal effects of age and sex. Brain Imaging and Behavior, 2017, 11, 1497-1514.	1.1	144
43	DNA Methylation of the Serotonin Transporter Gene in Peripheral Cells and Stress-Related Changes in Hippocampal Volume: A Study in Depressed Patients and Healthy Controls. PLoS ONE, 2015, 10, e0119061.	1.1	140
44	The Genetics of the Mood Disorder Spectrum: Genome-wide Association Analyses of More Than 185,000 Cases and 439,000 Controls. Biological Psychiatry, 2020, 88, 169-184.	0.7	137
45	Confirmation and refinement of an â€~at-risk' haplotype for schizophrenia suggests the EST cluster, Hs.97362, as a potential susceptibility gene at the Neuregulin-1 locus. Molecular Psychiatry, 2004, 9, 208-212.	4.1	131
46	Psychosis Susceptibility Gene ZNF804A and Cognitive Performance in Schizophrenia. Archives of General Psychiatry, 2010, 67, 692.	13.8	129
47	ConfirmingRGS4 as a susceptibility gene for schizophrenia. American Journal of Medical Genetics Part A, 2004, 125B, 50-53.	2.4	125
48	The SNP ratio test: pathway analysis of genome-wide association datasets. Bioinformatics, 2009, 25, 2762-2763.	1.8	125
49	DNA methylation differences at the glucocorticoid receptor gene in depression are related to functional alterations in hypothalamic–pituitary–adrenal axis activity and to early life emotional abuse. Psychiatry Research, 2018, 265, 341-348.	1.7	120
50	Genome-wide Association Studies: Findings at the Major Histocompatibility Complex Locus in Psychosis. Biological Psychiatry, 2014, 75, 276-283.	0.7	115
51	Analysis of High-Resolution HapMap of DTNBP1 (Dysbindin) Suggests No Consistency between Reported Common Variant Associations and Schizophrenia. American Journal of Human Genetics, 2006, 79, 903-909.	2.6	111
52	Variance in neurocognitive performance is associated with dysbindin-1 in schizophrenia: A preliminary study. Neuropsychologia, 2007, 45, 454-458.	0.7	109
53	Development of Strategies for SNP Detection in RNA-Seq Data: Application to Lymphoblastoid Cell Lines and Evaluation Using 1000 Genomes Data. PLoS ONE, 2013, 8, e58815.	1.1	108
54	Large-Scale Cognitive GWAS Meta-Analysis Reveals Tissue-Specific Neural Expression and Potential Nootropic Drug Targets. Cell Reports, 2017, 21, 2597-2613.	2.9	103

#	Article	IF	CITATIONS
55	Occurrence and co-occurrence of hallucinations by modality in schizophrenia-spectrum disorders. Psychiatry Research, 2017, 252, 154-160.	1.7	96
56	Evaluation of a Susceptibility Gene for Schizophrenia: Genotype Based Meta-Analysis of RCS4 Polymorphisms from Thirteen Independent Samples. Biological Psychiatry, 2006, 60, 152-162.	0.7	87
57	Pleiotropic Meta-Analysis of Cognition, Education, and Schizophrenia Differentiates Roles of Early Neurodevelopmental and Adult Synaptic Pathways. American Journal of Human Genetics, 2019, 105, 334-350.	2.6	86
58	No evidence for association of the dysbindin gene [DTNBP1] with schizophrenia in an Irish population-based study. Schizophrenia Research, 2003, 60, 167-172.	1.1	85
59	Brainâ€derived neurotrophic factor Val66Met polymorphism and early life adversity affect hippocampal volume. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2013, 162, 183-190.	1.1	85
60	Common variant at 16p11.2 conferring risk of psychosis. Molecular Psychiatry, 2014, 19, 108-114.	4.1	85
61	Reduced fractional anisotropy in the uncinate fasciculus in patients with major depression carrying the metâ€allele of the Val66Met brainâ€derived neurotrophic factor genotype. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2012, 159B, 537-548.	1.1	82
62	CNV analysis in a large schizophrenia sample implicates deletions at 16p12.1 and SLC1A1 and duplications at 1p36.33 and CGNL1. Human Molecular Genetics, 2014, 23, 1669-1676.	1.4	82
63	Preserved cognitive function is associated with suicidal ideation and single suicide attempts in schizophrenia. Schizophrenia Research, 2012, 140, 232-236.	1.1	81
64	Identification of mechanosensitive genes during skeletal development: alteration of genes associated with cytoskeletal rearrangement and cell signalling pathways. BMC Genomics, 2014, 15, 48.	1.2	80
65	ZNF804A risk allele is associated with relatively intact gray matter volume in patients with schizophrenia. NeuroImage, 2011, 54, 2132-2137.	2.1	78
66	Genetic variants associated with longitudinal changes in brain structure across the lifespan. Nature Neuroscience, 2022, 25, 421-432.	7.1	75
67	DNA methylation of the serotonin transporter gene (<i>SLC6A4</i>) is associated with brain function involved in processing emotional stimuli. Journal of Psychiatry and Neuroscience, 2015, 40, 296-305.	1.4	73
68	DNA methylation meta-analysis reveals cellular alterations in psychosis and markers of treatment-resistant schizophrenia. ELife, 2021, 10, .	2.8	72
69	Neurocognition and suicidal behaviour in an Irish population with major psychotic disorders. Schizophrenia Research, 2006, 85, 196-200.	1.1	69
70	Implication of a Rare Deletion at Distal 16p11.2 in Schizophrenia. JAMA Psychiatry, 2013, 70, 253.	6.0	69
71	GWA study data mining and independent replication identify cardiomyopathy-associated 5 (CMYA5) as a risk gene for schizophrenia. Molecular Psychiatry, 2011, 16, 1117-1129.	4.1	67
72	BDNFVal66Met genotype interacts with childhood adversity and influences the formation of hippocampal subfields. Human Brain Mapping, 2014, 35, 5776-5783.	1.9	67

#	Article	lF	CITATIONS
73	Analysis of 10 independent samples provides evidence for association between schizophrenia and a SNP flanking fibroblast growth factor receptor 2. Molecular Psychiatry, 2009, 14, 30-36.	4.1	66
74	BDNF Val66Met polymorphism is associated with aggressive behavior in schizophrenia. European Psychiatry, 2010, 25, 311-313.	0.1	66
75	First implication of <i>STRA6</i> mutations in isolated anophthalmia, microphthalmia, and coloboma: A new dimension to the <i>STRA6</i> phenotype. Human Mutation, 2011, 32, 1417-1426.	1.1	66
76	Exome sequencing in bipolar disorder identifies AKAP11 as a risk gene shared with schizophrenia. Nature Genetics, 2022, 54, 541-547.	9.4	65
77	Early Visual Processing Deficits in Dysbindin-Associated Schizophrenia. Biological Psychiatry, 2008, 63, 484-489.	0.7	62
78	Mood congruent psychotic symptoms and specific cognitive deficits in carriers of the novel schizophrenia risk variant at MIR-137. Neuroscience Letters, 2013, 532, 33-38.	1.0	61
79	Allelic differences between Europeans and Chinese for CREB1 SNPs and their implications in gene expression regulation, hippocampal structure and function, and bipolar disorder susceptibility. Molecular Psychiatry, 2014, 19, 452-461.	4.1	61
80	The Role of the Major Histocompatibility Complex Region in Cognition and Brain Structure: A Schizophrenia GWAS Follow-Up. American Journal of Psychiatry, 2013, 170, 877-885.	4.0	60
81	The Relationship Between Polygenic Risk Scores and Cognition in Schizophrenia. Schizophrenia Bulletin, 2020, 46, 336-344.	2.3	60
82	Evidence for association and epistasis at the DAOA/G30 and D â€amino acid oxidase loci in an Irish schizophrenia sample. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2007, 144B, 949-953.	1.1	57
83	Variation in DNA repair genes XRCC3, XRCC4, XRCC5 and susceptibility to myeloma. Human Molecular Genetics, 2007, 16, 3117-3127.	1.4	54
84	Dysbindin (DTNBP1) and the Biogenesis of Lysosome-Related Organelles Complex 1 (BLOC-1): Main and Epistatic Gene Effects Are Potential Contributors to Schizophrenia Susceptibility. Biological Psychiatry, 2008, 63, 24-31.	0.7	54
85	Association of Copy Number Variation of the 15q11.2 BP1-BP2 Region With Cortical and Subcortical Morphology and Cognition. JAMA Psychiatry, 2020, 77, 420.	6.0	54
86	New data and an old puzzle: the negative association between schizophrenia and rheumatoid arthritis. International Journal of Epidemiology, 2015, 44, 1706-1721.	0.9	53
87	The Psychosis Susceptibility Gene ZNF804A: Associations, Functions, and Phenotypes. Schizophrenia Bulletin, 2010, 36, 904-909.	2.3	51
88	Evidence for Genetic Overlap Between Schizophrenia and Age at First Birth in Women. JAMA Psychiatry, 2016, 73, 497.	6.0	51
89	Neurotrophic Tyrosine Kinase Polymorphism Impacts White Matter Connections in Patients with Major Depressive Disorder. Biological Psychiatry, 2012, 72, 663-670.	0.7	50
90	Insulin-like growth factor 1 (IGF1) and its active peptide (1–3)IGF1 enhance the expression of synaptic markers in neuronal circuits through different cellular mechanisms. Neuroscience Letters, 2012, 520, 51-56.	1.0	49

#	Article	IF	CITATIONS
91	Dose response of the 16p11.2 distal copy number variant on intracranial volume and basal ganglia. Molecular Psychiatry, 2020, 25, 584-602.	4.1	49
92	The Relationship Between White Matter Microstructure and General Cognitive Ability in Patients With Schizophrenia and Healthy Participants in the ENIGMA Consortium. American Journal of Psychiatry, 2020, 177, 537-547.	4.0	49
93	Neuropsychological effects of the <i><scp>CSMD1</scp></i> genomeâ€wide associated schizophrenia risk variant rs10503253. Genes, Brain and Behavior, 2013, 12, 203-209.	1.1	48
94	GWAS and eQTL analysis identifies a SNP associated with both residual feed intake and GFRA2 expression in beef cattle. Scientific Reports, 2018, 8, 14301.	1.6	48
95	Neuroharmony: A new tool for harmonizing volumetric MRI data from unseen scanners. Neurolmage, 2020, 220, 117127.	2.1	48
96	Population structure and genome-wide patterns of variation in Ireland and Britain. European Journal of Human Genetics, 2010, 18, 1248-1254.	1.4	46
97	Avian Resistance to Campylobacter jejuni Colonization Is Associated with an Intestinal Immunogene Expression Signature Identified by mRNA Sequencing. PLoS ONE, 2012, 7, e40409.	1.1	46
98	Influence of NOS1 on Verbal Intelligence and Working Memory in Both Patients With Schizophrenia and Healthy Control Subjects. Archives of General Psychiatry, 2009, 66, 1045.	13.8	45
99	Effect of Genetic Variant in BICC1 on Functional and Structural Brain Changes in Depression. Neuropsychopharmacology, 2012, 37, 2855-2862.	2.8	45
100	Social cognition in bipolar disorder versus schizophrenia: comparability in mental state decoding deficits. Bipolar Disorders, 2012, 14, 743-748.	1.1	44
101	Interaction Testing and Polygenic Risk Scoring to Estimate the Association of Common Genetic Variants With Treatment Resistance in Schizophrenia. JAMA Psychiatry, 2022, 79, 260.	6.0	44
102	Cognitive analysis of schizophrenia risk genes that function as epigenetic regulators of gene expression. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2016, 171, 1170-1179.	1.1	43
103	Effects of MIR137 on fronto-amygdala functional connectivity. NeuroImage, 2014, 90, 189-195.	2.1	42
104	Linkage disequilibrium mapping provides further evidence of a gene for reading disability on chromosome 6p21.3–22. Molecular Psychiatry, 2003, 8, 176-185.	4.1	41
105	Multiplex Target Enrichment Using DNA Indexing for Ultra-High Throughput SNP Detection. DNA Research, 2011, 18, 31-38.	1.5	41
106	Targeted Sequencing of 10,198 Samples Confirms Abnormalities in Neuronal Activity and Implicates Voltage-Gated Sodium Channels in Schizophrenia Pathogenesis. Biological Psychiatry, 2019, 85, 554-562.	0.7	40
107	Mutation of Semaphorin-6A Disrupts Limbic and Cortical Connectivity and Models Neurodevelopmental Psychopathology. PLoS ONE, 2011, 6, e26488.	1.1	40
108	A <scp>metaâ€analysis</scp> of deep brain structural shape and asymmetry abnormalities in 2,833 individuals with schizophrenia compared with 3,929 healthy volunteers via the <scp>ENIGMA Consortium</scp> . Human Brain Mapping, 2022, 43, 352-372.	1.9	39

#	Article	IF	CITATIONS
109	An inherited duplication at the gene p21 Protein-Activated Kinase 7 (PAK7) is a risk factor for psychosis. Human Molecular Genetics, 2014, 23, 3316-3326.	1.4	37
110	Evidence for rare and common genetic risk variants for schizophrenia at protein kinase C, alpha. Molecular Psychiatry, 2010, 15, 1101-1111.	4.1	32
111	Evidence for <i>cis</i> â€acting regulation of ANK3 and CACNA1C gene expression. Bipolar Disorders, 2010, 12, 440-445.	1.1	31
112	Genome-wide linkage analysis of 972 bipolar pedigrees using single-nucleotide polymorphisms. Molecular Psychiatry, 2012, 17, 818-826.	4.1	31
113	A dysbindin risk haplotype associated with less severe manic-type symptoms in psychosis. Neuroscience Letters, 2008, 431, 146-149.	1.0	30
114	Neural effects of the <scp><i>CSMD</i></scp> <i>1</i> genomeâ€wide associated schizophrenia risk variant rs10503253. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2013, 162, 530-537.	1.1	30
115	Effects of a novel schizophrenia risk variant rs7914558 at <i>CNNM2</i> on brain structure and attributional style. British Journal of Psychiatry, 2014, 204, 115-121.	1.7	30
116	Altered medial prefrontal activity during dynamic face processing in schizophrenia spectrum patients. Schizophrenia Research, 2014, 157, 225-230.	1.1	30
117	Rare DNA variants in the brain-derived neurotrophic factor gene increase risk for attention-deficit hyperactivity disorder: a next-generation sequencing study. Molecular Psychiatry, 2017, 22, 580-584.	4.1	30
118	Reduced Occipital and Prefrontal Brain Volumes in Dysbindin-Associated Schizophrenia. Neuropsychopharmacology, 2010, 35, 368-373.	2.8	29
119	Genetic Differences between Five European Populations. Human Heredity, 2010, 70, 141-149.	0.4	29
120	Genes regulated by SATB2 during neurodevelopment contribute to schizophrenia and educational attainment. PLoS Genetics, 2018, 14, e1007515.	1.5	29
121	Chitinase-3-Like 1 (CHI3L1) Gene and Schizophrenia: Genetic Association and a Potential Functional Mechanism. Biological Psychiatry, 2008, 64, 98-103.	0.7	28
122	Relationship between the COMT-Val158Met and BDNF-Val66Met Polymorphisms, Childhood Trauma and Psychotic Experiences in an Adolescent General Population Sample. PLoS ONE, 2013, 8, e79741.	1.1	28
123	Variability in Working Memory Performance Explained by Epistasis vs Polygenic Scores in the <i>ZNF804A</i> Pathway. JAMA Psychiatry, 2014, 71, 778.	6.0	28
124	Cognitive Characterization of Schizophrenia Risk Variants Involved in Synaptic Transmission: Evidence of CACNA1C's Role in Working Memory. Neuropsychopharmacology, 2017, 42, 2612-2622.	2.8	28
125	d-Amino acid oxidase (DAO) genotype and mood symptomatology in schizophrenia. Neuroscience Letters, 2007, 426, 97-100.	1.0	26
126	Does the ability to sustain attention underlie symptom severity in schizophrenia?. Schizophrenia Research, 2009, 107, 319-323.	1.1	26

#	Article	IF	CITATIONS
127	The Effect of the Neurogranin Schizophrenia Risk Variant rs12807809 on Brain Structure and Function. Twin Research and Human Genetics, 2012, 15, 296-303.	0.3	26
128	Global endometrial transcriptomic profiling: transient immune activation precedes tissue proliferation and repair in healthy beef cows. BMC Genomics, 2012, 13, 489.	1.2	26
129	The NOS1 variant rs6490121 is associated with variation in prefrontal function and grey matter density in healthy individuals. NeuroImage, 2012, 60, 614-622.	2.1	26
130	Further evidence of alerted default network connectivity and association with theory of mind ability in schizophrenia. Schizophrenia Research, 2017, 184, 52-58.	1.1	26
131	Childhood trauma, brain structure and emotion recognition in patients with schizophrenia and healthy participants. Social Cognitive and Affective Neuroscience, 2020, 15, 1325-1339.	1.5	26
132	Social dysfunction in schizophrenia: An investigation of the GAF scale's sensitivity to deficits in social cognition. Schizophrenia Research, 2013, 146, 363-365.	1.1	25
133	Independent evidence for an association between general cognitive ability and a genetic locus for educational attainment. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2015, 168, 363-373.	1.1	25
134	Common polygenic variation in coeliac disease and confirmation of ZNF335 and NIFA as disease susceptibility loci. European Journal of Human Genetics, 2016, 24, 291-297.	1.4	25
135	Are deficits in executive sub-processes simply reflecting more general cognitive decline in schizophrenia?. Schizophrenia Research, 2006, 85, 168-173.	1.1	24
136	1q21.1 distal copy number variants are associated with cerebral and cognitive alterations in humans. Translational Psychiatry, 2021, 11, 182.	2.4	24
137	No Reliable Association between Runs of Homozygosity and Schizophrenia in a Well-Powered Replication Study. PLoS Genetics, 2016, 12, e1006343.	1.5	24
138	A neuropsychological investigation of the genome wide associated schizophrenia risk variant NRGN rs12807809. Schizophrenia Research, 2011, 125, 304-306.	1.1	23
139	Childhood trauma, parental bonding, and social cognition in patients with schizophrenia and healthy adults. Journal of Clinical Psychology, 2021, 77, 241-253.	1.0	22
140	Early life Adversity, functional connectivity and cognitive performance in Schizophrenia: The mediating role of IL-6. Brain, Behavior, and Immunity, 2021, 98, 388-396.	2.0	21
141	ZNF804A and social cognition in patients with schizophrenia and healthy controls. Molecular Psychiatry, 2012, 17, 118-119.	4.1	20
142	Analysis of the hexanucleotide repeat expansion and founder haplotype at C9ORF72 in an Irish psychosis case-control sample. Neurobiology of Aging, 2014, 35, 1510.e1-1510.e5.	1.5	20
143	The effect of breed and diet type on the global transcriptome of hepatic tissue in beef cattle divergent for feed efficiency. BMC Genomics, 2019, 20, 525.	1.2	20
144	Rare Copy Number Variants Are Associated With Poorer Cognition in Schizophrenia. Biological Psychiatry, 2021, 90, 28-34.	0.7	20

#	Article	IF	CITATIONS
145	Promoter polymorphisms in two overlapping 6p25 genes implicate mitochondrial proteins in cognitive deficit in schizophrenia. Molecular Psychiatry, 2012, 17, 1328-1339.	4.1	19
146	A <i>NOS1</i> variant implicated in cognitive performance influences evoked neural responses during a high density EEG study of early visual perception. Human Brain Mapping, 2012, 33, 1202-1211.	1.9	19
147	Effects of ZNF804A on auditory P300 response in schizophrenia. Translational Psychiatry, 2014, 4, e345-e345.	2.4	19
148	BDNF Val66Met polymorphism in patterns of neural activation in individuals with MDD and healthy controls. Journal of Affective Disorders, 2015, 184, 239-244.	2.0	19
149	DAOA ARG30LYS and verbal memory function in schizophrenia. Molecular Psychiatry, 2007, 12, 795-796.	4.1	18
150	Replicated genetic evidence supports a role for HOMER2 in schizophrenia. Neuroscience Letters, 2010, 468, 229-233.	1.0	18
151	Functional investigation of a schizophrenia GWAS signal at the CDC42 gene. World Journal of Biological Psychiatry, 2012, 13, 550-554.	1.3	18
152	The one and the many: effects of the cell adhesion molecule pathway on neuropsychological function in psychosis. Psychological Medicine, 2014, 44, 2177-2187.	2.7	18
153	No evidence that runs of homozygosity are associated with schizophrenia in an Irish genome-wide association dataset. Schizophrenia Research, 2014, 154, 79-82.	1.1	18
154	MIR137HG risk variant rs1625579 genotype is related to corpus callosum volume in schizophrenia. Neuroscience Letters, 2015, 602, 44-49.	1.0	18
155	Changes in Default-Mode Network Associated With Childhood Trauma in Schizophrenia. Schizophrenia Bulletin, 2021, 47, 1482-1494.	2.3	18
156	The miRâ€137 schizophrenia susceptibility variant rs1625579 does not predict variability in brain volume in a sample of schizophrenic patients and healthy individuals. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2014, 165, 467-471.	1.1	17
157	Effects of early life adversity on immune function and cognitive performance: results from the ALSPAC cohort. Social Psychiatry and Psychiatric Epidemiology, 2020, 55, 723-733.	1.6	17
158	Genes influenced by MEF2C contribute to neurodevelopmental disease via gene expression changes that affect multiple types of cortical excitatory neurons. Human Molecular Genetics, 2021, 30, 961-970.	1.4	17
159	The Genetics of Endophenotypes of Neurofunction to Understand Schizophrenia (GENUS) consortium: A collaborative cognitive and neuroimaging genetics project. Schizophrenia Research, 2018, 195, 306-317.	1.1	17
160	Clinical symptomatology and the psychosis risk gene ZNF804A. Schizophrenia Research, 2010, 122, 273-275.	1.1	16
161	Genetic Classification of Populations Using Supervised Learning. PLoS ONE, 2011, 6, e14802.	1.1	16
162	Functional assessment of a promoter polymorphism in S100B, a putative risk variant for bipolar disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2011, 156, 691-699.	1.1	16

#	Article	IF	CITATIONS
163	Dissemination of clonally related multidrug-resistant <i>Klebsiella pneumoniae</i> in Ireland. Epidemiology and Infection, 2016, 144, 443-448.	1.0	16
164	Major Depressive Disorder: Existing Hypotheses about Pathophysiological Mechanisms and New Genetic Findings. Genes, 2022, 13, 646.	1.0	16
165	Do antisaccade deficits in schizophrenia provide evidence of a specific inhibitory function?. Journal of the International Neuropsychological Society, 2006, 12, 901-6.	1.2	15
166	Genome-wide schizophrenia variant at MIR137 does not impact white matter microstructure in healthy participants. Neuroscience Letters, 2014, 574, 6-10.	1.0	15
167	Genes encoding SATB2-interacting proteins in adult cerebral cortex contribute to human cognitive ability. PLoS Genetics, 2019, 15, e1007890.	1.5	15
168	Investigating rare pathogenic/likely pathogenic exonic variation in bipolar disorder. Molecular Psychiatry, 2021, 26, 5239-5250.	4.1	15
169	Next-generation sequencing of the mitochondrial genome and association with IgA nephropathy in a renal transplant population. Scientific Reports, 2014, 4, 7379.	1.6	14
170	Contamination of domestic groundwater systems by verotoxigenic escherichia coli (VTEC), 2003–2019: A global scoping review. Water Research, 2021, 188, 116496.	5.3	14
171	SATB2â€LEMD2 interaction links nuclear shape plasticity to regulation of cognitionâ€related genes. EMBO Journal, 2021, 40, e103701.	3.5	14
172	Assessment of Inactivating Stop Codon Mutations in Forty Saccharomyces cerevisiae Strains: Implications for [PSI+] Prion- Mediated Phenotypes. PLoS ONE, 2011, 6, e28684.	1.1	13
173	Beyond C4: Analysis of the complement gene pathway shows enrichment for IQ in patients with psychotic disorders and healthy controls. Genes, Brain and Behavior, 2019, 18, e12602.	1.1	13
174	Investigation of the apolipoprotein-L (APOL) gene family and schizophrenia using a novel DNA pooling strategy for public database SNPs. Schizophrenia Research, 2005, 76, 231-238.	1.1	12
175	Identifying schizophrenia patients who carry pathogenic genetic copy number variants using standard clinical assessment: retrospective cohort study. British Journal of Psychiatry, 2020, 216, 275-279.	1.7	12
176	Identifying nootropic drug targets via large-scale cognitive GWAS and transcriptomics. Neuropsychopharmacology, 2021, 46, 1788-1801.	2.8	12
177	Nonâ€random error in genotype calling procedures: Implications for familyâ€based and case–control genomeâ€wide association studies. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2008, 147B, 1379-1386.	1.1	11
178	Fertility and genomics: comparison of gene expression in contrasting reproductive tissues of female cattle. Reproduction, Fertility and Development, 2016, 28, 11.	0.1	11
179	Shiga toxigenic Escherichia coli incidence is related to small area variation in cattle density in a region in Ireland. Science of the Total Environment, 2018, 637-638, 865-870.	3.9	11
180	Activated charcoal as a capture material for silver nanoparticles in environmental water samples. Science of the Total Environment, 2018, 645, 356-362.	3.9	11

#	Article	IF	CITATIONS
181	Effects of MiRâ€137 genetic risk score on brain volume and cortical measures in patients with schizophrenia and controls. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2018, 177, 369-376.	1.1	10
182	Microglial-expressed genetic risk variants, cognitive function and brain volume in patients with schizophrenia and healthy controls. Translational Psychiatry, 2021, 11, 490.	2.4	10
183	Normalization of impaired emotion inhibition in bipolar disorder mediated by cholinergic neurotransmission in the cingulate cortex. Neuropsychopharmacology, 2022, 47, 1643-1651.	2.8	9
184	Altered gene regulation as a candidate mechanism by which ciliopathy gene SDCCAG8 contributes to schizophrenia and cognitive function. Human Molecular Genetics, 2020, 29, 407-417.	1.4	8
185	Characterization of methicillin-resistant <i>Staphylococcus aureus</i> from residents and the environment in a long-term care facility. Epidemiology and Infection, 2015, 143, 2985-2988.	1.0	7
186	Variance in facial recognition performance associated with BDNF in schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2007, 144B, 578-579.	1.1	6
187	Effects of complement geneâ€set polygenic risk score on brain volume and cortical measures in patients with psychotic disorders and healthy controls. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2020, 183, 445-453.	1.1	6
188	Cognitive Genomics: Recent Advances and Current Challenges. Current Psychiatry Reports, 2020, 22, 2.	2.1	6
189	An assessment of the Irish population for large-scale genetic mapping studies involving epilepsy and other complex diseases. European Journal of Human Genetics, 2008, 16, 176-183.	1.4	5
190	Itm2a silencing rescues lamin A mediated inhibition of 3T3-L1 adipocyte differentiation. Adipocyte, 2017, 6, 259-276.	1.3	5
191	Meta-Analysis of Brain Gene Expression Data from Mouse Model Studies of Maternal Immune Activation Using Poly(I:C). Genes, 2021, 12, 1363.	1.0	4
192	Controlling for background genetic effects using polygenic scores improves the power of genome-wide association studies. Scientific Reports, 2021, 11, 19571.	1.6	4
193	Mutational analysis of the insulin-like growth factor 1 receptor tyrosine kinase domain in non-small cell lung cancer patients. Molecular and Clinical Oncology, 2015, 3, 1073-1079.	0.4	3
194	Multi-Trait Analysis of GWAS and Biological Insights Into Cognition: A Response to Hill (2018). Twin Research and Human Genetics, 2018, 21, 394-397.	0.3	3
195	Interleukin 6 predicts increased neural response during face processing in a sample of individuals with schizophrenia and healthy participants: A functional magnetic resonance imaging study. NeuroImage: Clinical, 2021, 32, 102851.	1.4	3
196	Thirteen Independent Genetic Loci Associated with Preserved Processing Speed in a Study of Cognitive Resilience in 330,097 Individuals in the UK Biobank. Genes, 2022, 13, 122.	1.0	3
197	Allelic expression imbalance of the schizophrenia susceptibility gene CHI3L1. Psychiatric Genetics, 2011, 21, 281-286.	0.6	2
198	Populationâ€based identityâ€byâ€descent mapping combined with exome sequencing to detect rare risk variants for schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2019, 180, 223-231.	1.1	2

#	Article	IF	CITATIONS
199	Genes regulated by <scp>BCL11B</scp> during Tâ€cell development are enriched for de novo mutations found in schizophrenia patients. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2020, 183, 370-379.	1.1	2
200	Functional Genomic Regulation In The Brain: (Epi)Genetic Variation, Neurodevelopment and Psychiatric Disease. European Neuropsychopharmacology, 2019, 29, S771-S772.	0.3	1
201	T91. NOVEL INFLUENCE OF EARLY-LIFE ADVERSITY ACROSS FUNCTIONAL NETWORKS DURING WORKING MEMORY IN SCHIZOPHRENIA. Schizophrenia Bulletin, 2019, 45, S239-S239.	2.3	1
202	Diagnostic yield of a custom-designed multi-gene cancer panel in Irish patients with breast cancer. Irish Journal of Medical Science, 2020, 189, 849-864.	0.8	1
203	Molecular genetic evidence for overlap between general cognitive ability and risk for schizophrenia: a report from the Cognitive Genomics consorTium (COGENT). , 0, .		1
204	ZNF804A DELINEATES A SCHIZOPHRENIA SUBTYPE CHARACTERISED BY RELATIVELY SPARED COGNITIVE PERFORMANCE AND BRAIN VOLUME. Schizophrenia Research, 2010, 117, 219.	1.1	0
205	Authors' reply. British Journal of Psychiatry, 2015, 206, 344-344.	1.7	0
206	Greater number of older siblings is associated with decreased theory of mind ability in psychosis. Schizophrenia Research, 2015, 165, 247-248.	1.1	0
207	P.3.018 Schizophrenia susceptibility gene CACNA1C associates with microstructure of fornix. European Neuropsychopharmacology, 2016, 26, S61-S62.	0.3	0
208	Gene-Set Analysis of Gwas Data Identifies A Role For Satb2 and The Nurd Complex In Schizophrenia and Educational Attainment. European Neuropsychopharmacology, 2019, 29, S772.	0.3	0
209	F125A MOLECULAR ANALYSIS OF SDCCAG8, A SCHIZOPHRENIA RISK GENE THAT IS REQUIRED FOR EFFICIENT PRIMARY CILIOGENESIS. European Neuropsychopharmacology, 2019, 29, S1177-S1178.	0.3	0
210	A COGNITIVE AND MOLECULAR ANALYSIS OF SDCCAG8, A SCHIZOPHRENIA RISK GENE THAT FUNCTIONS IN THE CENTROSOME. European Neuropsychopharmacology, 2019, 29, S876-S877.	0.3	0
211	F122WHOLE GENOME SEQUENCING OF SCHIZOPHRENIA IN IRELAND. European Neuropsychopharmacology, 2019, 29, S1176.	0.3	0
212	O51. Beyond C4: Analysis of the Complement Gene Pathway Shows Enrichment for IQ in Patients With Schizophrenia and Healthy Controls. Biological Psychiatry, 2019, 85, S126-S127.	0.7	0
213	Genetic Risk Variants Interacting With MIR137: Effects On Cognition, Brain Structure And Brain Function In Patients And Healthy Participants. European Neuropsychopharmacology, 2019, 29, S729-S730.	0.3	0
214	SU121GENETIC VARIATION RELATED TO IMMUNE FUNCTION AND SCHIZOPHRENIA RISK: EVIDENCE FOR EFFECTS ON COGNITION. European Neuropsychopharmacology, 2019, 29, S1331-S1332.	0.3	0
215	43RARE COPY NUMBER VARIATIONS ARE ASSOCIATED WITH POORER COGNITION IN SCHIZOPHRENIA. European Neuropsychopharmacology, 2019, 29, S1091-S1092.	0.3	0
216	Childhood Trauma and Default-Mode Network in Schizophrenia. Biological Psychiatry, 2020, 87, S372-S373.	0.7	0

#	Article	IF	CITATIONS
217	Reported Experiences of Childhood Trauma Does Not Explain Altered Brain Network Integration or Segregation Detected in Schizophrenia. Biological Psychiatry, 2021, 89, S277-S278.	0.7	0