
Yoshitaka Ohtubo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4030167/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Functional expression of ionotropic purinergic receptors on mouse taste bud cells. Journal of Physiology, 2007, 584, 473-488.	1.3	52
2	Quantitative analysis of taste bud cell numbers in fungiform and soft palate taste buds of mice. Brain Research, 2011, 1367, 13-21.	1.1	36
3	Optical recordings of taste responses from fungiform papillae of mouse in situ. Journal of Physiology, 2001, 530, 287-293.	1.3	33
4	Effects of endomorphin on substantia gelatinosa neurons in rat spinal cord slices. British Journal of Pharmacology, 2003, 140, 1088-1096.	2.7	24
5	Lucifer Yellow Slows Voltageâ€Gated Na + Current Inactivation in a Lightâ€Dependent Manner in Mice. Journal of Physiology, 2003, 550, 159-167.	1.3	23
6	Functional Expression of M3, a Muscarinic Acetylcholine Receptor Subtype, in Taste Bud Cells of Mouse Fungiform Papillae. Chemical Senses, 2008, 33, 47-55.	1.1	21
7	Cellâ€typeâ€dependent action potentials and voltageâ€gated currents in mouse fungiform taste buds. European Journal of Neuroscience, 2014, 39, 24-34.	1.2	18
8	Open channel block of NMDA receptors by conformationally restricted analogs of milnacipran and their protective effect against NMDA-induced neurotoxicity. Synapse, 1999, 31, 87-96.	0.6	16
9	Subtypeâ€dependent postnatal development of taste receptor cells in mouse fungiform taste buds. European Journal of Neuroscience, 2012, 35, 1661-1671.	1.2	16
10	Quantitative Analysis of Taste Bud Cell Numbers in the Circumvallate and Foliate Taste Buds of Mice. Chemical Senses, 2020, 45, 261-273.	1.1	13
11	Dye-permeable, voltage-gated channel on mouse fungiform taste bud cells. Brain Research, 2011, 1373, 17-24.	1.1	9
12	Selective expression of muscarinic acetylcholine receptor subtype M3 by mouse type III taste bud cells. Pflugers Archiv European Journal of Physiology, 2016, 468, 2053-2059.	1.3	8
13	A subset of taste receptor cells express biocytinâ€permeable channels activated by reducing extracellular Ca ²⁺ concentration. European Journal of Neuroscience, 2020, 51, 1605-1623.	1.2	8
14	Slow recovery from the inactivation of voltage-gated sodium channel Nav1.3 in mouse taste receptor cells. Pflugers Archiv European Journal of Physiology, 2021, 473, 953-968.	1.3	7
15	Ageâ€related electrophysiological changes in mouse taste receptor cells. Experimental Physiology, 2021, 106, 519-531.	0.9	4
16	Electrophysiological identification of mouse taste bud cells. International Congress Series, 2007, 1301, 254-257.	0.2	3
17	A network model toward a taste bud inspired sensor. International Congress Series, 2007, 1301, 52-55.	0.2	3
18	Hypertonicity augments bullfrog taste nerve responses to inorganic salts. Pflugers Archiv European Journal of Physiology, 2012, 463, 845-851.	1.3	3

Υοςηιτακά Οητυβο

#	Article	IF	CITATIONS
19	Network model of chemical-sensing system inspired by mouse taste buds. Biological Cybernetics, 2011, 105, 21-27.	0.6	2
20	Expression of purinergic receptors in mouse taste buds. International Congress Series, 2006, 1291, 81-84.	0.2	1
21	Quantitative study on cell types in adult mouse taste buds. International Congress Series, 2007, 1301, 250-253.	0.2	1
22	Functional expression of muscarinic acetylcholine receptors in mouse taste buds. International Congress Series, 2007, 1301, 246-249.	0.2	1
23	Stochastic Synchronization and Array-Enhanced Coherence Resonance in a Bio-inspired Chemical Sensor Array. , 2008, , .		1
24	Time-dependent expression of hypertonic effects on bullfrog taste nerve responses to salts and bitter substances. Brain Research, 2014, 1556, 1-9.	1.1	1
25	A Chemical Sensor Array Inspired by Mouse Taste Buds. Studies in Computational Intelligence, 2010, , 159-164.	0.7	1
26	Taste Receptor Cells Generate Oscillating Receptor Potentials by Activating G Protein-Coupled Taste Receptors. Frontiers in Physiology, 2022, 13, .	1.3	1
27	Expression patterns of taste transduction-related proteins during development in mouse taste buds. International Congress Series, 2006, 1291, 85-88.	0.2	Ο
28	The Role of Tight Junctions and Hypertonicity in Taste Information Processing. Seibutsu Butsuri, 2014, 54, 303-306.	0.0	0
29	Taste Bud Cell Networks in Mice Seibutsu Butsuri, 2004, 44, 21-25.	0.0	Ο
30	Signal Processing Based on Cell-Type-Dependent Action Potentials in Mouse Taste Buds. The Brain & Neural Networks, 2013, 20, 159-165.	0.1	0
31	Diurnal rhythm regulates the frequency of carbachol-induced beta oscillation via inhibitory neural system in rat hippocampus. Cognitive Neurodynamics, 0, , 1.	2.3	0