
Peter P Edwards

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4029592/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sustainable chemical processing of flowing wastewater through microwave energy. Chemosphere, 2022, 287, 132035.	4.2	5
2	Transforming carbon dioxide into jet fuel using an organic combustion-synthesized Fe-Mn-K catalyst. Nature Communications, 2020, 11, 6395.	5.8	161
3	One-Pot Synthesis of Ca Oxide-Promoted Cr Catalysts for the Dehydrogenation of Propane Using CO ₂ . Industrial & Engineering Chemistry Research, 2020, 59, 12645-12656.	1.8	7
4	The decarbonization of coal tar via microwave-initiated catalytic deep dehydrogenation. Fuel, 2020, 268, 117332.	3.4	5
5	MnO _{<i>x</i>} -Promoted, Coking-Resistant Nickel-Based Catalysts for Microwave-Initiated CO ₂ Utilization. Industrial & Engineering Chemistry Research, 2020, 59, 6914-6923.	1.8	13
6	H2–rich gas production from leaves. Catalysis Today, 2018, 317, 43-49.	2.2	10
7	Hydrogen bonds between methanol and the light liquid olefins 1-pentene and 1-hexene: from application to fundamental science. Chemical Communications, 2017, 53, 4026-4029.	2.2	8
8	Thermodynamic study of hydrocarbon synthesis from carbon dioxide and hydrogen. , 2017, 7, 942-957.		29
9	Rapid Production of Highâ€Purity Hydrogen Fuel through Microwaveâ€Promoted Deep Catalytic Dehydrogenation of Liquid Alkanes with Abundant Metals. Angewandte Chemie - International Edition, 2017, 56, 10170-10173.	7.2	42
10	Rapid Production of Highâ€Purity Hydrogen Fuel through Microwaveâ€Promoted Deep Catalytic Dehydrogenation of Liquid Alkanes with Abundant Metals. Angewandte Chemie, 2017, 129, 10304-10307.	1.6	3
11	Glycerol hydrogenolysis over a Pt–Ni bimetallic catalyst with hydrogen generated in situ. RSC Advances, 2017, 7, 38251-38256.	1.7	13
12	A research into the thermodynamics of methanol to hydrocarbon (MTH): conflictions between simulated product distribution and experimental results. Applied Petrochemical Research, 2017, 7, 55-66.	1.3	2
13	Thermodynamic analysis of synthesis of cyclopentanol from cyclopentene and comparison with experimental data. Applied Petrochemical Research, 2015, 5, 135-142.	1.3	5
14	Methanol-to-hydrocarbons conversion over MoO ₃ /H-ZSM-5 catalysts prepared via lower temperature calcination: a route to tailor the distribution and evolution of promoter Mo species, and their corresponding catalytic properties. Chemical Science, 2015, 6, 5152-5163.	3.7	41
15	Citric acid-assisted synthesis of γ-alumina-supported high loading CoMo sulfide catalysts for the hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) reactions. Applied Petrochemical Research, 2015, 5, 181-197.	1.3	21
16	High alcohol synthesis (HAS) from syngas over supported molybdenum carbide catalysts. Applied Petrochemical Research, 2013, 3, 71-77.	1.3	11
17	TPO/TPD study on the activation of silica supported cobalt catalyst. Applied Petrochemical Research, 2013, 3, 25-34.	1.3	3
18	Photo-catalytic conversion of oxygenated hydrocarbons to hydrogen over heteroatom-doped TiO2 catalysts. International Journal of Hydrogen Energy, 2009, 34, 125-129.	3.8	93