
Alyona A Starikova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/402953/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Understanding the Origin of One- or Two-Step Valence Tautomeric Transitions in Bis(dioxolene)-Bridged Dinuclear Cobalt Complexes. Journal of the American Chemical Society, 2020, 142, 10692-10704.	13.7	70
2	Usefulness of the Ïfâ€Aromaticity and Ïfâ€Antiaromaticity Concepts for Clusters and Solid‣tate Compounds. Chemistry - A European Journal, 2018, 24, 292-305.	3.3	59
3	Redox Isomerism in Mainâ€Group Chemistry: Tin Complex with <i>o</i> â€Iminoquinone Ligands. European Journal of Inorganic Chemistry, 2018, 2018, 1087-1092.	2.0	51
4	Valence tautomerism and spin crossover in pyridinophane–cobalt–dioxolene complexes: an experimental and computational study. Dalton Transactions, 2019, 48, 11674-11689.	3.3	47
5	Adducts of transition metal complexes with redox-active ligands: the structure and spin-state-switching rearrangements. Russian Chemical Reviews, 2018, 87, 1049-1079.	6.5	44
6	Computational insight into magnetic behavior and properties of the transition metal complexes with redox-active ligands: a DFT approach. Pure and Applied Chemistry, 2018, 90, 811-824.	1.9	41
7	Computational design of valence tautomeric adducts of Co ^{II} diketonates with redox-active o-benzoquinone ligands. Dalton Transactions, 2013, 42, 1726-1734.	3.3	40
8	Molecular design of the valence tautomeric mixed-ligand adducts of CoII diketonates with redox-active ligands. Mendeleev Communications, 2015, 25, 83-92.	1.6	40
9	A DFT computational study of the magnetic behaviour of cobalt dioxolene complexes of tetraazamacrocyclic ligands. Computational and Theoretical Chemistry, 2018, 1124, 15-22.	2.5	36
10	Valence tautomeric dinuclear adducts of Co(<scp>ii</scp>) diketonates with redox-active diquinones for the design of spin qubits: computational modeling. Dalton Transactions, 2015, 44, 1982-1991.	3.3	33
11	Coordination capabilities of metal ions and steric features of organic ligands affecting formation of mono- or binuclear zinc(II) and cadmium(II) pivalates. Polyhedron, 2018, 152, 61-72.	2.2	29
12	Halogen-free GeO ₂ conversion: electrochemical reduction <i>vs.</i> complexation in (DTBC) ₂ Ge[Py(CN) _n] (<i>n</i> = 0…2) complexes. Dalton Transactions, 2018, 47, 17127-17133.	3.3	26
13	Quantum chemical modeling of magnetically bistable metal coordination compounds. Synchronization of spin crossover, valence tautomerism and charge transfer induced spin transition mechanisms. Dalton Transactions, 2016, 45, 12103-12113.	3.3	25
14	Quantum-chemical study of spin crossover in cobalt complexes with an o-benzoquinone ligand. Doklady Chemistry, 2016, 467, 83-87.	0.9	24
15	Theoretical modeling of valence tautomeric dinuclear cobalt complexes. Adducts of Co ^{ll} diketonates with cyclic redox-active tetraone ligands. Dalton Transactions, 2015, 44, 17819-17828.	3.3	21
16	Ferromagnetically Coupled Molecular Complexes with a Co II 2 Gd III Pivalate Core: Synthesis, Structure, Magnetic Properties and Thermal Stability. ChemistrySelect, 2019, 4, 14261-14270.	1.5	20
17	O,N-Heterocyclic germylenes as efficient catalysts for hydroboration and cyanosilylation of benzaldehyde. New Journal of Chemistry, 0, , .	2.8	19
18	Valence Tautomerism in Mainâ€Group Complexes? Computational Modeling of Si, Ge, Sn, and Pb Bischelates with <i>o</i> ″minoquinone Ligands. European Journal of Inorganic Chemistry, 2016, 2016, 252-258.	2.0	18

#	Article	IF	CITATIONS
19	Europium and ytterbium complexes with <i>o</i> -iminoquinonato ligands: synthesis, structure, and magnetic behavior. Dalton Transactions, 2019, 48, 3338-3348.	3.3	18
20	Electronic structure and magnetic properties of the triangular nanographenes with radical substituents: a DFT study. Physical Chemistry Chemical Physics, 2020, 22, 1288-1298.	2.8	18
21	Mononuclear Cobalt and Iron o-Quinone Complexes with Tetradentate N-Donor Bases: Structures and Properties. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2020, 46, 193-213.	1.0	18
22	Binuclear nickel(II) complexes with 3,5-di-tert-butylbenzoate and 3,5-di-tert-butyl-4-hydroxybenzoate anions and 2,3-lutidine: the synthesis, structure, and magnetic properties. Russian Chemical Bulletin, 2016, 65, 2812-2819.	1.5	17
23	Electronic Lability of Quinonoidâ€Bridged Dinuclear 3 dâ€Metal Complexes with Tetradentate Nâ€Donor Bases. European Journal of Inorganic Chemistry, 2021, 2021, 2684-2695.	2.0	17
24	Computational design of mixed-ligand adducts of Co aminovinyl ketonates with redox-active o-quinones and their derivatives. Russian Chemical Bulletin, 2014, 63, 812-820.	1.5	16
25	Cobalt diketonate adducts with redox-active diiminosuccinonitriles. Mendeleev Communications, 2014, 24, 329-331.	1.6	16
26	Valence tautomeric complexes of cobalt diketonates with Diimines: A quantum-chemical study. Doklady Chemistry, 2011, 440, 289-293.	0.9	15
27	Assessing the Viability of Extended Nonmetal Atom Chains in M _{<i>n</i>} F _{4<i>n</i>+2} (M=S and Se). Angewandte Chemie - International Edition, 2015, 54, 1476-1480.	13.8	15
28	Easily electroreducible halogen-free germanium complexes with biologically active pyridines. Inorganica Chimica Acta, 2019, 495, 119007.	2.4	15
29	Molecular Structure and Photoluminescence Behavior of the Zn(II) Carboxylate Complex with Pyrazino[2,3-f][1,10]phenanthroline. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2020, 46, 260-267.	1.0	15
30	The First Series of Heterometallic Ln ^{III} â€V ^{IV} Complexes Based on Substituted Malonic Acid Anions: Synthesis, Structure and Magnetic Properties. European Journal of Inorganic Chemistry, 2018, 2018, 5075-5090.	2.0	14
31	Computational Modeling of Spin-Crossover in Mixed-Ligand Binuclear Iron and Cobalt Complexes with 5,6-Bis(salicylideneimino)-1,10-Phenanthroline. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2019, 45, 105-111.	1.0	14
32	Quantum chemical modeling of pyrene-4,5-dione adducts with cobalt diketonates. Computational and Theoretical Chemistry, 2016, 1076, 74-80.	2.5	13
33	Acene-Linked Zethrenes and Bisphenalenyls: A DFT Search for Organic Tetraradicals. Journal of Physical Chemistry A, 2021, 125, 6562-6570.	2.5	13
34	Spin crossover in monoadducts of Co(Salen) with pyridine and imidazole: a quantum chemical study. Structural Chemistry, 2014, 25, 1865-1871.	2.0	12
35	Tetranuclear Cu(II) and Ni(II) complexes with 1,3,5-triketone ligands: A quantum-chemical simulation of exchange interactions. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2015, 41, 487-495.	1.0	11
36	Binuclear Di-o-Quinone Cobalt Complexes with the Acene Linker: Quantum Chemical Study of the Structures and Magnetic Properties. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2019, 45, 411-419.	1.0	11

#	Article	IF	CITATIONS
37	Computational insight into magnetic behaviour of cobalt tris(2-pyridylmethyl)amine complexes with dioxolenes incorporating stable radicals. Chemical Physics Letters, 2021, 762, 138128.	2.6	11
38	DFT Computational Design of a Ligandâ€Driven Lightâ€Induced Mechanism for Spinâ€State Switching. European Journal of Inorganic Chemistry, 2013, 2013, 4203-4219.	2.0	10
39	Theoretical modeling of photocontrolled spin crossover in Fe(II) phenanthroline complexes. Doklady Chemistry, 2015, 460, 5-9.	0.9	10
40	Rational design of potential spin qubits manipulated by the valence tautomerism mechanism: quantum-chemical modeling of the trinuclear transition metal complexes with bischelate linkers. New Journal of Chemistry, 2017, 41, 6497-6503.	2.8	10
41	Quantum chemical modeling of valence tautomeric adducts of Coll bischelates with pyrene-4,5-diimines. Russian Chemical Bulletin, 2017, 66, 208-221.	1.5	10
42	The structurally variable network of spin couplings and migrating paramagnetic centers in binuclear <i>o</i> -quinone Co ^{II} complexes with biradical acene linkers: a computational DFT study. Dalton Transactions, 2018, 47, 15948-15956.	3.3	10
43	Supramolecular Dâ∢A-layered structures based on germanium complexes with 2,3-dihydroxynaphthalene and <i>N</i> , <i>N</i> ′-bidentate ligands. RSC Advances, 2021, 11, 21527-21536.	3.6	10
44	Stable heterocyclic stannylene: The metal, ligand entered reactivity, and effective catalytic hydroboration of aldehydes. Applied Organometallic Chemistry, 2022, 36, .	3.5	10
45	Light-controlled spin-state-switching rearrangements of transition metal complexes with photochromic ligands. Pure and Applied Chemistry, 2017, 89, 985-1005.	1.9	9
46	Dispersion interactions in oligomerization of metal diketonates: a DFT evaluation. Chemical Papers, 2018, 72, 829-839.	2.2	9
47	Features of the Molecular Structure and Luminescence of Rare-Earth Metal Complexes with Perfluorinated (Benzothiazolyl)phenolate Ligands. Molecules, 2019, 24, 2376.	3.8	9
48	Computational modeling of structure and magnetic properties of dinuclear di-o-benzoquinone iron complexes with linear polycyclic linkers. Russian Chemical Bulletin, 2020, 69, 203-211.	1.5	9
49	One-Step versus Two-Step Valence Tautomeric Transitions in Tetraoxolene-Bridged Dinuclear Cobalt Compounds. Inorganic Chemistry, 2022, 61, 4428-4441.	4.0	9
50	Reaction of 1-(oxiran-2-ylmethyl)-1H-indole-3-carboxaldehyde with amines. Mendeleev Communications, 2011, 21, 231-233.	1.6	8
51	Valence-tautomeric adducts of Co(II) diketonates based on annelated di-o-quinones: Computer simulation. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2017, 43, 197-205.	1.0	8
52	Quantum chemical study of binuclear adducts of cobalt azomethine complexes with pyrene-4,5,9,10-tetraimine. Russian Chemical Bulletin, 2017, 66, 1543-1549.	1.5	8
53	Magnetic Properties of Acenes and Their o-Quinone Derivatives: Computer Simulation. Doklady Chemistry, 2018, 478, 21-25.	0.9	8
54	Quantum-chemical modeling of metal coordination compounds with photoswitchable magnetic properties controlled by ligand rearrangements. Theoretical and Experimental Chemistry, 2011, 46, 363-370.	0.8	7

#	Article	IF	CITATIONS
55	Computational modeling of spin crossover phenomenon in adducts of iron bis-chelates with o-diiminobenzoquinones. Russian Chemical Bulletin, 2016, 65, 1464-1472.	1.5	7
56	Structure and magnetic properties of di-o-semiquinone complexes of alkali metals with a bischelate linker: a quantum chemical study. Mendeleev Communications, 2016, 26, 423-425.	1.6	7
57	Dual magnetic behavior of Co(II) and Fe(II) bis(chelate) adducts with Di-o-diiminobenzoquinone: Quantum chemical modeling. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2017, 43, 718-726.	1.0	7
58	Reactions of [(dpp-Bian)Ln(dme) 2] (Ln = Eu, Yb) with some oxidants. Inorganic Chemistry Communication, 2018, 92, 40-45.	3.9	7
59	Computational design of magnetically active trinuclear heterometallic complexes on the basis of 1,3,5-triazapentadiene ligands. Chemical Papers, 2018, 72, 821-828.	2.2	7
60	Magnetic Properties of the Dicationic Iron o-Quinone Complexes with the Pyridinophane Ligands: A Quantum Chemical Study. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2019, 45, 675-679.	1.0	7
61	Rare example of structurally characterized mononuclear N-heterocyclic carbene containing zinc carboxylate. Mendeleev Communications, 2020, 30, 293-295.	1.6	7
62	Computer Simulation of the Structure and Magnetic Properties of Cobalt Complexes with N-Substituted Pyridinophanes and Radical-Functionalized o-Benzoquinones. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2020, 46, 371-378.	1.0	7
63	Electronic structure and magnetic properties of pyridinophane complexes of iron with radical-bearing catecholates: a quantum chemical study. Russian Chemical Bulletin, 2021, 70, 811-817.	1.5	7
64	Computational modeling of LD LISC and LIESST rearrangements of a Fe(II) complex with phenanthroline modified by photochromic chromene. Doklady Chemistry, 2016, 468, 152-155.	0.9	6
65	Computational Assessment of an Elusive Aromatic N ₃ P ₃ Molecule. ACS Omega, 2018, 3, 286-291.	3.5	6
66	Ambidentate and redox-properties of 4,7-phenanthroline-5,6-dione in cobalt complexes: a quantum chemical study. Russian Chemical Bulletin, 2018, 67, 1182-1189.	1.5	6
67	Electronic Structure and Magnetic Properties of o-Benzoquinone Iron Complexes with Tetraazamacrocyclic Ligands. Journal of Structural Chemistry, 2019, 60, 1219-1225.	1.0	6
68	Bimetallic coordination compounds with 5,6-bis(salicylideneimino)-1,10-phenanthroline: quantum chemical study of spin transitions. Russian Chemical Bulletin, 2019, 68, 725-731.	1.5	6
69	o-Quinone phenalenyl derivatives as expedient ligands for the design of magnetically active metal complexes: A computational study. Chemical Physics Letters, 2020, 740, 137073.	2.6	6
70	Computational modeling of cobalt diketonate adducts with o-benzoquinones incorporating organosilicon radicals. Russian Chemical Bulletin, 2021, 70, 309-315.	1.5	6
71	Computational modeling of chelating properties of quinoline spiropyrans. Doklady Chemistry, 2013, 453, 263-267.	0.9	5
72	Adducts of tetracoordinate cobalt(II) complexes and 1-(pyridin-2-yl)methanimine: Computational search for valence tautomeric systems. Russian Journal of General Chemistry, 2016, 86, 859-864.	0.8	5

#	Article	IF	CITATIONS
73	Quantum chemical study of the adducts of azomethine cobalt complexes with acenaphthene-1,2-diimines. Russian Journal of General Chemistry, 2017, 87, 98-106.	0.8	5
74	Magnetic Properties of Adducts of Trinuclear Heterometallic Complexes with Acetonitrile: Quantum Chemical Study. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2018, 44, 483-488.	1.0	5
75	Rational Design of Electronically Labile Dinuclear Fe and Co complexes with 1,10â€Phenanthrolineâ€5,6â€Điimine: A DFT study. Journal of Computational Chemistry, 2019, 40, 2284-2292.	3.3	5
76	Heterospin magnetically active bimetallic Fe and Co complexes of aldiminato-functionalized catechol: a DFT study. Structural Chemistry, 2020, 31, 37-46.	2.0	5
77	Barium(II)–Chromium(III) Coordination Polymers Based on Dimethylmalonate Anions: Synthesis, Crystal Structure, Magnetic Properties, and EPR Spectra. European Journal of Inorganic Chemistry, 2020, 2020, 4116-4126.	2.0	5
78	Tetrahalocatecholate Rare Earth Complexes: Dinuclear Motifs with Intramolecular RE···XC(Ar) Interactions. Crystal Growth and Design, 2020, 20, 3396-3405.	3.0	5
79	Polynuclear architectures with cadmium and lithium ions based on the {Li2Cd2(O2CCMe3)6} fragment. Journal of Solid State Chemistry, 2021, 294, 121842.	2.9	5
80	Heterospin iron complexes with dioxolenes functionalized with stable radicals: quantum chemical study. Russian Chemical Bulletin, 2021, 70, 2315-2323.	1.5	5
81	Quantum chemical study of photomagnetic properties of Ni(II) monochelates with chromenes. Doklady Chemistry, 2015, 462, 118-122.	0.9	4
82	Computer simulation of the isomerization mechanism and spectral characteristics of spiro[1,3,4]oxadiazines. Russian Chemical Bulletin, 2016, 65, 40-46.	1.5	4
83	Trinuclear adducts of cobalt diketonates based on di-o-quinone with a bis(chelate) linker: Computational search for spin qubits. Doklady Chemistry, 2017, 473, 57-62.	0.9	4
84	Computational modeling of the dinuclear metal complexes with di-o-quinones comprising paramagnetic acene linker groups. Computational and Theoretical Chemistry, 2018, 1138, 163-167.	2.5	4
85	Quantum chemical study of pyridine addition to Ni(II) β-diketonate complexes. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2010, 36, 597-604.	1.0	3
86	Adducts of manganese diketonates with redox-active ligands: Computational modeling of valence tautomeric systems. Computational and Theoretical Chemistry, 2015, 1070, 132-142.	2.5	3
87	Compounds of potassium and tin(II) with diiminopyridine ligands: EPR spectroscopy and theoretical study. Russian Journal of General Chemistry, 2017, 87, 2582-2588.	0.8	3
88	Erbium Mixedâ€Ligand βâ€Diketiminatoâ€Diamido Complex: Unusual Structure of Diamide Ligand. ChemistrySelect, 2018, 3, 1262-1267.	1.5	3
89	DFT computational insight into the mechanism of the monomer–trimer isomerism of Ni(II) bis-acetylacetonate. Inorganica Chimica Acta, 2021, 517, 120183.	2.4	3
90	Quantum Chemical Study of the Structures and Stability of Copper(II) Bis(diketonate) Dimers. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2021, 47, 174-179.	1.0	3

#	Article	IF	CITATIONS
91	Quantum Chemical Study of Spin Transitions in the Bimetallic Fe/Co Complexes with the Bis(catecholate) Bridging Ligand. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2021, 47, 601-609.	1.0	3
92	Quantum-Chemical Study of Cobalt Complexes with o-Quinones Modified with Silicon Triangulene Derivatives. Doklady Chemistry, 2020, 494, 149-154.	0.9	3
93	o-Benzoquinone Cobalt Complexes Bearing Organosilicon Radicals: Quantum-Chemical Study. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2022, 48, 233-241.	1.0	3
94	Organic Polyradicals Based on Acenes. Computational Modeling. Doklady Chemistry, 2022, 503, 51-55.	0.9	3
95	Quantum-chemical study of manganese(II) diketonate adducts with diimine. Doklady Chemistry, 2015, 463, 211-214.	0.9	2
96	Quantum-chemical study of spiro[indoline-2,2′-[2H]-chromenes] and their complexes with a silver cluster. Doklady Chemistry, 2017, 474, 121-125.	0.9	2
97	Dinuclear adducts of di-o-iminoquinone ligands with Coll diketonates: computational insights into two-step valence tautomeric rearrangements. Journal of Molecular Modeling, 2017, 23, 307.	1.8	2
98	Quantum-chemical study of (Z)-6,8-di-tert-butyl-N-(4-methoxyphenyl)-3-((4-methoxyphenyl)imino)-3H-phenoxazine-2-amine complexation with cobalt bis(chelate)s. Doklady Chemistry, 2017, 476, 215-218.	0.9	2
99	Quantum-Chemical Study of Spin Transitions in Bimetallic Fe–M Complexes (M = Co, Ni, Cu, Zn) with the 1,10-Phenanthroline Linker. Doklady Chemistry, 2018, 482, 181-184.	0.9	2
100	Theoretical Modeling of the Structure of N-[2-[(Hydroxyalkylimino)Methyl]Phenyl]-4-Methylbenzene-Sulfamides and Their Mono- and Binuclear Copper(II) Complexes. Journal of Structural Chemistry, 2019, 60, 365-372.	1.0	2
101	Small anion-assisted electrochemical potential splitting in a new series of bistriarylamine derivatives: organic mixed valency across a urea bridge and zwitterionization. Beilstein Journal of Organic Chemistry, 2019, 15, 2277-2286.	2.2	2
102	Spinâ€5tateâ€5witching Rearrangements of Bis(dioxolene)â€Bridged CrCo Complexes: A DFT Study. European Journal of Inorganic Chemistry, 2021, 2021, 4113-4121.	2.0	2
103	Computational modeling of mixed-ligand cobalt diketonate complexes with pyrene-4,5,9,10-tetraimine. Doklady Chemistry, 2017, 475, 168-172.	0.9	1
104	Frontispiece: Usefulness of the Ïfâ€Aromaticity and Ïfâ€Antiaromaticity Concepts for Clusters and Solidâ€State Compounds. Chemistry - A European Journal, 2018, 24, .	3.3	1
105	Computational modeling of mixed-ligand cobalt complexes with o-quinone derivative of corannulene. Russian Chemical Bulletin, 2018, 67, 1978-1984.	1.5	1
106	DFT study of Raman scattering spectra of complexes of spiropyrans with the silver cluster. Russian Chemical Bulletin, 2018, 67, 972-979.	1.5	1
107	Photochromic Properties and Surface Enhanced Raman Scattering Spectra of Indoline Spiropyran in Silver-Based Nanocomposite Films. Optics and Spectroscopy (English Translation of Optika I) Tj ETQq1 1 0.78431	40gBT /O\ 	verlock 10 Tr
108	Dinuclear Cobalt and Iron Complexes with an Azomethine Derivative of 1,10-Phenanthroline: A Quantum-Chemical Study. Doklady Chemistry, 2019, 487, 168-172.	0.9	1

#	Article	IF	CITATIONS
109	Electronic Structure and Magnetic Properties of Mixed-Ligand Cobalt Complexes Containing Organogermanium Triangulenes. Russian Journal of General Chemistry, 2020, 90, 2312-2322.	0.8	1
110	Computational search for redox isomerism in Ge and Sn bis-chelates with α-diimine ligands. Mendeleev Communications, 2022, 32, 49-51.	1.6	1
111	Heteroligand oâ€5emiquinonato Cobalt Complexes of 3â€Cyano and 3â€Nitroformazans. European Journal of Inorganic Chemistry, 0, , .	2.0	1
112	A computational search for spin-crossover in bis(catecholate) diiron complexes. Computational and Theoretical Chemistry, 2022, 1211, 113693.	2.5	1
113	Quantum-Chemical Modeling of B32 Complexes with Nitrogen: Endo or Exo?. Russian Journal of Inorganic Chemistry, 2018, 63, 902-905.	1.3	0
114	Computer Design of Fe-M-Fe (M = Co, Ni, Cu, Zn) Complexes with Bis-Salicylaldiminate Linker Functionalized with 1,10-Phenanthroline. Russian Journal of General Chemistry, 2019, 89, 451-458.	0.8	0