
## Tony LeliÃ"vre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4029436/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The Adaptive Biasing Force Method: Everything You Always Wanted To Know but Were Afraid To Ask.<br>Journal of Physical Chemistry B, 2015, 119, 1129-1151.                                              | 2.6  | 351       |
| 2  | Machine Learning Force Fields and Coarse-Grained Variables in Molecular Dynamics: Application to<br>Materials and Biological Systems. Journal of Chemical Theory and Computation, 2020, 16, 4757-4775. | 5.3  | 120       |
| 3  | Smoothed Biasing Forces Yield Unbiased Free Energies with the Extended-System Adaptive Biasing Force<br>Method. Journal of Physical Chemistry B, 2017, 121, 3676-3685.                                 | 2.6  | 113       |
| 4  | Existence of solution for a micro–macro model of polymeric fluid: the FENE model. Journal of<br>Functional Analysis, 2004, 209, 162-193.                                                               | 1.4  | 103       |
| 5  | Computation of free energy profiles with parallel adaptive dynamics. Journal of Chemical Physics, 2007, 126, 134111.                                                                                   | 3.0  | 101       |
| 6  | Partial differential equations and stochastic methods in molecular dynamics. Acta Numerica, 2016, 25,<br>681-880.                                                                                      | 10.7 | 98        |
| 7  | Reduced Basis Techniques for Stochastic Problems. Archives of Computational Methods in Engineering, 2010, 17, 435-454.                                                                                 | 10.2 | 81        |
| 8  | Adaptive Multilevel Splitting Method for Molecular Dynamics Calculation of Benzamidine-Trypsin Dissociation Time. Journal of Chemical Theory and Computation, 2016, 12, 2983-2989.                     | 5.3  | 80        |
| 9  | Optimal Non-reversible Linear Drift for the Convergence to Equilibrium of a Diffusion. Journal of Statistical Physics, 2013, 152, 237-274.                                                             | 1.2  | 77        |
| 10 | Long-Time Asymptotics of a Multiscale Model for Polymeric Fluid Flows. Archive for Rational<br>Mechanics and Analysis, 2006, 181, 97-148.                                                              | 2.4  | 75        |
| 11 | Effective dynamics using conditional expectations. Nonlinearity, 2010, 23, 2131-2163.                                                                                                                  | 1.4  | 74        |
| 12 | A mathematical formalization of the parallel replica dynamics. Monte Carlo Methods and Applications, 2012, 18, .                                                                                       | 0.8  | 70        |
| 13 | Variance Reduction Using Nonreversible Langevin Samplers. Journal of Statistical Physics, 2016, 163, 457-491.                                                                                          | 1.2  | 70        |
| 14 | Projection of diffusions on submanifolds: Application to mean force computation. Communications on Pure and Applied Mathematics, 2008, 61, 371-408.                                                    | 3.1  | 69        |
| 15 | Potential of Mean Force Calculations: A Multiple-Walker Adaptive Biasing Force Approach. Journal of<br>Chemical Theory and Computation, 2010, 6, 1008-1017.                                            | 5.3  | 69        |
| 16 | Generalized Navier boundary condition and geometric conservation law for surface tension.<br>Computer Methods in Applied Mechanics and Engineering, 2009, 198, 644-656.                                | 6.6  | 65        |
| 17 | Results and Questions on a Nonlinear Approximation Approach for Solving High-dimensional Partial<br>Differential Equations. Constructive Approximation, 2009, 30, 621-651.                             | 3.0  | 63        |
| 18 | Long-time convergence of an adaptive biasing force method. Nonlinearity, 2008, 21, 1155-1181.                                                                                                          | 1.4  | 62        |

| #  | Article                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Free Energy Calculations: An Efficient Adaptive Biasing Potential Method. Journal of Physical<br>Chemistry B, 2010, 114, 5823-5830.                                       | 2.6 | 54        |
| 20 | A multiple replica approach to simulate reactive trajectories. Journal of Chemical Physics, 2011, 134, 054108.                                                            | 3.0 | 52        |
| 21 | CONVERGENCE OF A GREEDY ALGORITHM FOR HIGH-DIMENSIONAL CONVEX NONLINEAR PROBLEMS.<br>Mathematical Models and Methods in Applied Sciences, 2011, 21, 2433-2467.            | 3.3 | 51        |
| 22 | Langevin dynamics with constraints and computation of free energy differences. Mathematics of Computation, 2012, 81, 2071-2125.                                           | 2.1 | 50        |
| 23 | The Extended Generalized Adaptive Biasing Force Algorithm for Multidimensional Free-Energy Calculations. Journal of Chemical Theory and Computation, 2017, 13, 1566-1576. | 5.3 | 44        |
| 24 | NUMERICAL ANALYSIS OF MICRO–MACRO SIMULATIONS OF POLYMERIC FLUID FLOWS: A SIMPLE CASE.<br>Mathematical Models and Methods in Applied Sciences, 2002, 12, 1205-1243.       | 3.3 | 42        |
| 25 | Chasing Collective Variables Using Autoencoders and Biased Trajectories. Journal of Chemical Theory and Computation, 2022, 18, 59-78.                                     | 5.3 | 39        |
| 26 | Unbiasedness of some generalized adaptive multilevel splitting algorithms. Annals of Applied<br>Probability, 2016, 26, .                                                  | 1.3 | 35        |
| 27 | Jump Markov models and transition state theory: the quasi-stationary distribution approach. Faraday<br>Discussions, 2016, 195, 469-495.                                   | 3.2 | 34        |
| 28 | Simulations of MHD flows with moving interfaces. Journal of Computational Physics, 2003, 184, 163-191.                                                                    | 3.8 | 33        |
| 29 | Free-energy-dissipative schemes for the Oldroyd-B model. ESAIM: Mathematical Modelling and Numerical Analysis, 2009, 43, 523-561.                                         | 1.9 | 33        |
| 30 | A Micro-Macro Parareal Algorithm: Application to Singularly Perturbed Ordinary Differential Equations. SIAM Journal of Scientific Computing, 2013, 35, A1951-A1986.       | 2.8 | 33        |
| 31 | A nonintrusive reduced basis method applied to aeroacoustic simulations. Advances in Computational<br>Mathematics, 2015, 41, 961-986.                                     | 1.6 | 32        |
| 32 | Enhanced Sampling of Multidimensional Free-Energy Landscapes Using Adaptive Biasing Forces. SIAM<br>Journal on Applied Mathematics, 2011, 71, 1673-1695.                  | 1.8 | 31        |
| 33 | On a variance reduction technique for micro–macro simulations of polymeric fluids. Journal of<br>Non-Newtonian Fluid Mechanics, 2004, 122, 91-106.                        | 2.4 | 30        |
| 34 | Micro-macro models for viscoelastic fluids: modelling, mathematics and numerics. Science China<br>Mathematics, 2012, 55, 353-384.                                         | 1.7 | 29        |
| 35 | Free energy methods for Bayesian inference: efficient exploration of univariate Gaussian mixture posteriors. Statistics and Computing, 2012, 22, 897-916.                 | 1.5 | 28        |
| 36 | An efficient sampling algorithm for variational Monte Carlo. Journal of Chemical Physics, 2006, 125, 114105.                                                              | 3.0 | 26        |

| #  | Article                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A generalized parallel replica dynamics. Journal of Computational Physics, 2015, 284, 595-616.                                                                                        | 3.8 | 23        |
| 38 | Multiscale Modelling of Complex Fluids: A Mathematical Initiation. Lecture Notes in Computational Science and Engineering, 2009, , 49-137.                                            | 0.3 | 23        |
| 39 | Computation of free energy differences through nonequilibrium stochastic dynamics: The reaction coordinate case. Journal of Computational Physics, 2007, 222, 624-643.                | 3.8 | 21        |
| 40 | Accurate and online-efficient evaluation of the <i>a posteriori</i> error bound in the reduced basis method. ESAIM: Mathematical Modelling and Numerical Analysis, 2014, 48, 207-229. | 1.9 | 21        |
| 41 | A variance reduction method for parametrized stochastic differential equations using the reduced basis paradigm. Communications in Mathematical Sciences, 2010, 8, 735-762.           | 1.0 | 20        |
| 42 | QUANTUM MONTE CARLO SIMULATIONS OF FERMIONS: A MATHEMATICAL ANALYSIS OF THE FIXED-NODE APPROXIMATION. Mathematical Models and Methods in Applied Sciences, 2006, 16, 1403-1440.       | 3.3 | 19        |
| 43 | Mathematical study of non-ideal electrostatic correlations in equilibrium electrolytes. Nonlinearity, 2012, 25, 1635-1652.                                                            | 1.4 | 19        |
| 44 | Hybrid Monte Carlo methods for sampling probability measures on submanifolds. Numerische<br>Mathematik, 2019, 143, 379-421.                                                           | 1.9 | 19        |
| 45 | Diffusion Monte Carlo method: Numerical Analysis in a Simple Case. ESAIM: Mathematical Modelling and Numerical Analysis, 2007, 41, 189-213.                                           | 1.9 | 17        |
| 46 | Analysis of adaptive multilevel splitting algorithms in an idealized case. ESAIM - Probability and Statistics, 2015, 19, 361-394.                                                     | 0.5 | 17        |
| 47 | Mathematical Analysis of Temperature Accelerated Dynamics. Multiscale Modeling and Simulation, 2014, 12, 290-317.                                                                     | 1.6 | 16        |
| 48 | Low temperature asymptotics for quasistationary distributions in a bounded domain. Analysis and PDE, 2015, 8, 561-628.                                                                | 1.4 | 16        |
| 49 | Optimal scaling for the transient phase of Metropolis Hastings algorithms: The longtime behavior.<br>Bernoulli, 2014, 20, .                                                           | 1.3 | 15        |
| 50 | Optimal scaling for the transient phase of the random walk Metropolis algorithm: The mean-field<br>limit. Annals of Applied Probability, 2015, 25, .                                  | 1.3 | 15        |
| 51 | Accelerated dynamics: Mathematical foundations and algorithmic improvements. European Physical<br>Journal: Special Topics, 2015, 224, 2429-2444.                                      | 2.6 | 15        |
| 52 | Convergence of the Wang-Landau algorithm. Mathematics of Computation, 2015, 84, 2297-2327.                                                                                            | 2.1 | 14        |
| 53 | Long-time convergence of an adaptive biasing force method: Variance reduction by Helmholtz projection. SMAI Journal of Computational Mathematics, 0, 1, 55-82.                        | 0.0 | 14        |
| 54 | Analyse de certains schémas de discrétisation pour des équations différentielles stochastiques<br>contraintes. Comptes Rendus Mathematique, 2008, 346, 471-476.                       | 0.3 | 13        |

Tony Lelièvre

| #  | Article                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Conservative stochastic differential equations: Mathematical and numerical analysis. Mathematics of Computation, 2009, 78, 2047-2074.                                                      | 2.1 | 13        |
| 56 | A numerical closure approach for kinetic models of polymeric fluids: Exploring closure relations for FENE dumbbells. Computers and Fluids, 2011, 43, 119-133.                              | 2.5 | 13        |
| 57 | Free energy calculations from adaptive molecular dynamics simulations with adiabatic reweighting.<br>Journal of Chemical Physics, 2014, 140, 104108.                                       | 3.0 | 13        |
| 58 | Greedy Algorithms for High-Dimensional Eigenvalue Problems. Constructive Approximation, 2014, 40, 387-423.                                                                                 | 3.0 | 13        |
| 59 | Pathwise estimates for an effective dynamics. Stochastic Processes and Their Applications, 2017, 127, 2841-2863.                                                                           | 0.9 | 13        |
| 60 | Sharp Asymptotics of the First Exit Point Density. Annals of PDE, 2019, 5, 1.                                                                                                              | 1.8 | 13        |
| 61 | Existence, uniqueness and convergence of a particle approximation for the Adaptive Biasing Force process. ESAIM: Mathematical Modelling and Numerical Analysis, 2010, 44, 831-865.         | 1.9 | 13        |
| 62 | MATHEMATICAL ANALYSIS OF A STOCHASTIC DIFFERENTIAL EQUATION ARISING IN THE MICRO-MACRO MODELLING OF POLYMERIC FLUIDS. , 2003, , .                                                          |     | 13        |
| 63 | Long-Time Convergence of an Adaptive Biasing Force Method: The Bi-Channel Case. Archive for Rational<br>Mechanics and Analysis, 2011, 202, 1-34.                                           | 2.4 | 12        |
| 64 | A general two-scale criteria for logarithmic Sobolev inequalities. Journal of Functional Analysis, 2009, 256, 2211-2221.                                                                   | 1.4 | 11        |
| 65 | Analysis of the adaptive multilevel splitting method on the isomerization of alanine dipeptide. Journal of Computational Chemistry, 2019, 40, 1198-1208.                                   | 3.3 | 11        |
| 66 | On a new class of score functions to estimate tail probabilities of some stochastic processes with adaptive multilevel splitting. Chaos, 2019, 29, 033126.                                 | 2.5 | 11        |
| 67 | The exit from a metastable state: Concentration of the exit point distribution on the low energy saddle points, part 1. Journal Des Mathematiques Pures Et Appliquees, 2020, 138, 242-306. | 1.6 | 11        |
| 68 | Derivation of Langevin dynamics in a nonzero background flow field. ESAIM: Mathematical Modelling and Numerical Analysis, 2013, 47, 1583-1626.                                             | 1.9 | 10        |
| 69 | Self-healing umbrella sampling: convergence and efficiency. Statistics and Computing, 2017, 27, 147-168.                                                                                   | 1.5 | 9         |
| 70 | Numerical study of a thin liquid film flowing down an inclined wavy plane. Physica D: Nonlinear<br>Phenomena, 2011, 240, 1714-1723.                                                        | 2.8 | 8         |
| 71 | Adaptive Multilevel Splitting in Molecular Dynamics Simulations. ESAIM Proceedings and Surveys, 2015, 48, 215-225.                                                                         | 0.4 | 8         |
| 72 | Adaptive multilevel splitting for Monte Carlo particle transport. EPJ Nuclear Sciences & Technologies, 2017, 3, 29.                                                                        | 0.7 | 8         |

| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Pathwise Estimates for Effective Dynamics: The Case of Nonlinear Vectorial Reaction Coordinates.<br>Multiscale Modeling and Simulation, 2019, 17, 1019-1051.                                              | 1.6 | 8         |
| 74 | Optimal error estimate for the CONNFFESSIT approach in a simple case. Computers and Fluids, 2004, 33, 815-820.                                                                                            | 2.5 | 7         |
| 75 | Effective dynamics for non-reversible stochastic differential equations: a quantitative study.<br>Nonlinearity, 2019, 32, 4779-4816.                                                                      | 1.4 | 7         |
| 76 | Some Remarks on Free Energy and Coarse-Graining. Lecture Notes in Computational Science and Engineering, 2012, , 279-329.                                                                                 | 0.3 | 7         |
| 77 | Exit Event from a Metastable State and Eyring-Kramers Law for the Overdamped Langevin Dynamics.<br>Springer Proceedings in Mathematics and Statistics, 2019, , 331-363.                                   | 0.2 | 6         |
| 78 | gen.parRep: A first implementation of the Generalized Parallel Replica dynamics for the long time simulation of metastable biochemical systems. Computer Physics Communications, 2019, 239, 311-324.      | 7.5 | 5         |
| 79 | Parareal computation of stochastic differential equations with time-scale separation: a numerical convergence study. Computing and Visualization in Science, 2020, 23, 1.                                 | 1.2 | 5         |
| 80 | Central Limit Theorem for stationary Fleming-Viot particle systems in finite spaces. Alea, 2018, 15, 1163.                                                                                                | 0.7 | 5         |
| 81 | Quasi-stationary distribution for the Langevin process in cylindrical domains, Part I: Existence, uniqueness and long-time convergence. Stochastic Processes and Their Applications, 2022, 144, 173-201.  | 0.9 | 5         |
| 82 | Adaptive models for polymeric fluid flow simulation. Comptes Rendus Mathematique, 2007, 344, 473-476.                                                                                                     | 0.3 | 4         |
| 83 | Application to large systems: general discussion. Faraday Discussions, 2016, 195, 671-698.                                                                                                                | 3.2 | 4         |
| 84 | Convergence and Efficiency of Adaptive Importance Sampling Techniques with Partial Biasing. Journal of Statistical Physics, 2018, 171, 220-268.                                                           | 1.2 | 4         |
| 85 | Modeling and simulation of the industrial production of aluminium: the nonlinear approach.<br>Computers and Fluids, 2004, 33, 801-814.                                                                    | 2.5 | 3         |
| 86 | Combining a reactive potential with a harmonic approximation for molecular dynamics simulation of failure: construction of a reduced potential. Journal of Physics: Conference Series, 2015, 574, 012041. | 0.4 | 3         |
| 87 | Variants of the Empirical Interpolation Method: Symmetric formulation, choice of norms and rectangular extension. Applied Mathematics Letters, 2016, 56, 23-28.                                           | 2.7 | 3         |
| 88 | Adaptive Multilevel Splitting for Monte Carlo particle transport. EPJ Web of Conferences, 2017, 153, 06006.                                                                                               | 0.3 | 3         |
| 89 | Computation of sensitivities for the invariant measure of a parameter dependent diffusion.<br>Stochastics and Partial Differential Equations: Analysis and Computations, 2018, 6, 125-183.                | 0.9 | 3         |
|    |                                                                                                                                                                                                           |     |           |

90 Mathematical Foundations of Accelerated Molecular Dynamics Methods. , 2018, , 1-32.

| #   | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Preface: Special Issue on Model Reduction. Journal of Scientific Computing, 2019, 81, 1-2.                                                                                                                 | 2.3 | 3         |
| 92  | An Adaptive Parareal Algorithm: Application to the Simulation of Molecular Dynamics Trajectories.<br>SIAM Journal of Scientific Computing, 2022, 44, B146-B176.                                            | 2.8 | 3         |
| 93  | A probabilistic study of the kinetic Fokker–Planck equation in cylindrical domains. Journal of<br>Evolution Equations, 2022, 22, 1.                                                                        | 1.1 | 3         |
| 94  | Coupling PDEs and SDEs: The Illustrative Example of the Multiscale Simulation of Viscoelastic Flows.<br>Lecture Notes in Computational Science and Engineering, 2005, , 149-168.                           | 0.3 | 2         |
| 95  | Efficiency of the Wang-Landau Algorithm: A Simple Test Case. Applied Mathematics Research EXpress, 2014, , .                                                                                               | 1.0 | 2         |
| 96  | The Parallel Replica Method for Simulating Long Trajectories of Markov Chains. Applied Mathematics<br>Research EXpress, 0, , .                                                                             | 1.0 | 2         |
| 97  | New methods: general discussion. Faraday Discussions, 2016, 195, 521-556.                                                                                                                                  | 3.2 | 2         |
| 98  | Periodic long-time behaviour for an approximate model of nematic polymers. Kinetic and Related<br>Models, 2012, 5, 357-382.                                                                                | 0.9 | 2         |
| 99  | Beyond multiscale and multiphysics: Multimaths for model coupling. Networks and Heterogeneous<br>Media, 2010, 5, 423-460.                                                                                  | 1.1 | 2         |
| 100 | Coupling a reactive potential with a harmonic approximation for atomistic simulations of material failure. Computer Methods in Applied Mechanics and Engineering, 2016, 305, 422-440.                      | 6.6 | 1         |
| 101 | Local and global solution for a nonlocal Fokker–Planck equation related to the adaptive biasing force process. Journal of Differential Equations, 2016, 260, 7032-7058.                                    | 2.2 | 1         |
| 102 | Analysis of a micro–macro acceleration method with minimum relative entropy moment matching.<br>Stochastic Processes and Their Applications, 2020, 130, 3753-3801.                                         | 0.9 | 1         |
| 103 | Stochastic homogenization of a scalar viscoelastic model exhibiting stress–strain hysteresis. ESAIM:<br>Mathematical Modelling and Numerical Analysis, 2020, 54, 879-928.                                  | 1.9 | 1         |
| 104 | The exit from a metastable state: concentration of the exit point distribution on the low energy saddle points, part 2. Stochastics and Partial Differential Equations: Analysis and Computations, 0, , 1. | 0.9 | 1         |
| 105 | Convergence of metadynamics: Discussion of the adiabatic hypothesis. Annals of Applied Probability, 2021, 31, .                                                                                            | 1.3 | 1         |
| 106 | Mathematical Foundations of Accelerated Molecular Dynamics Methods. , 2020, , 773-803.                                                                                                                     |     | 1         |
| 107 | MATHEMATICAL ANALYSIS OF A ONE-DIMENSIONAL MODEL FOR AN AGING FLUID. Mathematical Models and Methods in Applied Sciences, 2013, 23, 1561-1602.                                                             | 3.3 | 0         |
| 108 | Macroscopic Limit of a One-Dimensional Model for Aging Fluids. Multiscale Modeling and Simulation, 2014, 12, 1335-1378.                                                                                    | 1.6 | 0         |

| #   | Article                                                                                                                                                                              | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | A non linear approximation method for solving high dimensional partial differential equations:<br>Application in finance. Mathematics and Computers in Simulation, 2018, 143, 14-34. | 4.4 | Ο         |
| 110 | The Adaptive Biasing Force algorithm with non-conservative forces and related topics. ESAIM:<br>Mathematical Modelling and Numerical Analysis, 0, , .                                | 1.9 | 0         |