Laihui Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4029426/publications.pdf

Version: 2024-02-01

25 1,123 16 25
papers citations h-index g-index

25 25 25 1064 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Control of carbon nanotubes at the interface of a co-continuous immiscible polymer blend to fabricate conductive composites with ultralow percolation thresholds. Carbon, 2014, 73, 267-274.	10.3	225
2	A simple strategy to achieve very low percolation threshold via the selective distribution of carbon nanotubes at the interface of polymer blends. Journal of Materials Chemistry, 2012, 22, 22398.	6.7	141
3	Massive enhancement in the thermal conductivity of polymer composites by trapping graphene at the interface of a polymer blend. Composites Science and Technology, 2016, 129, 160-165.	7.8	118
4	Advances in Responsively Conductive Polymer Composites and Sensing Applications. Polymer Reviews, 2021, 61, 157-193.	10.9	103
5	Tung Oil-Based Modifier Toughening Epoxy Resin by Sacrificial Bonds. ACS Sustainable Chemistry and Engineering, 2019, 7, 17344-17353.	6.7	68
6	Parallel Carbon Nanotube Stripes in Polymer Thin Film with Remarkable Conductive Anisotropy. ACS Applied Materials & Samp; Interfaces, 2014, 6, 1754-1758.	8.0	66
7	Fabrication of a highly tough, strong, and stiff carbon nanotube/epoxy conductive composite with an ultralow percolation threshold <i>via</i> self-assembly. Journal of Materials Chemistry A, 2019, 7, 15731-15740.	10.3	41
8	Self-healing silicon-containing eugenol-based epoxy resin based on disulfide bond exchange: Synthesis and structure-property relationships. Polymer, 2021, 229, 123967.	3.8	41
9	Parallel carbon nanotube stripes in polymer thin film with tunable microstructures and anisotropic conductive properties. Composites Part A: Applied Science and Manufacturing, 2015, 69, 240-246.	7.6	35
10	Bio-based epoxy vitrimer for recyclable and carbon fiber reinforced materials: Synthesis and structure-property relationship. Composites Science and Technology, 2022, 227, 109575.	7.8	32
11	Synthesis and Properties of a Novel Environmental Epoxidized Glycidyl Ester of Ricinoleic Acetic Ester Plasticizer for Poly(vinyl chloride). Polymers, 2017, 9, 640.	4.5	30
12	A simple and novel method to design flexible and transparent epoxy resin with tunable mechanical properties. Polymer International, 2016, 65, 835-840.	3.1	29
13	Fabrication of Polymer Film with Extraordinary Conductive Anisotropy by Forming Parallel Conductive Vorticityâ€Aligned Stripes and Its Formation Mechanism. Macromolecular Materials and Engineering, 2016, 301, 743-749.	3. 6	26
14	Synthesis and application of environmental soybean oilâ€based epoxidized glycidyl ester plasticizer for poly(vinyl chloride). European Journal of Lipid Science and Technology, 2017, 119, 1600216.	1.5	25
15	Synthesis and application of a novel environmental C26 diglycidyl ester plasticizer based on castor oil for poly(vinyl chloride). Journal of Materials Science, 2018, 53, 8909-8920.	3.7	23
16	Toughening epoxy resin by constructing π-π interaction between a tung oil-based modifier and epoxy. Industrial Crops and Products, 2021, 170, 113723.	5.2	18
17	Synthesis and application of a novel cardanolâ€based plasticizer as secondary or main plasticizer for poly(vinyl chloride). Polymer International, 2018, 67, 269-275.	3.1	17
18	A hyperbranched polymer from tung oil for the modification of epoxy thermoset with simultaneous improvement in toughness and strength. New Journal of Chemistry, 2020, 44, 16856-16863.	2.8	15

Laihui Xiao

#	Article	IF	CITATION
19	Simultaneously strengthening, toughening, and conductivity improving for epoxy at ultralow carbonaceous filler content by constructing 3D nanostructures and sacrificial bonds. Composites Part A: Applied Science and Manufacturing, 2020, 137, 106014.	7.6	15
20	A renewable tung oil-derived nitrile rubber and its potential use in epoxy-toughening modifiers. RSC Advances, 2019, 9, 25880-25889.	3.6	14
21	Tung Oil-Derived Epoxy Vitrimers with High Mechanical Strength, Toughness, and Excellent Recyclability. ACS Sustainable Chemistry and Engineering, 2022, 10, 9829-9840.	6.7	14
22	Epoxidized dimeric acid methyl ester derived from rubber seed oil and its application as secondary plasticizer. Journal of Applied Polymer Science, $2016,133,.$	2.6	12
23	Boosting the selectivity of aromatic hydrocarbons via ex-situ catalytic fast pyrolysis of cellulose over Pt–Sn–Ce∫l³-Al2O3 catalyst. Journal of the Energy Institute, 2021, 98, 144-152.	5. 3	9
24	Synthesis and application of a novel thermostable epoxy plasticizer based on levulinic acid for poly(vinyl chloride). Journal of Applied Polymer Science, 2020, 137, 49066.	2.6	3
25	Diphenolic Acid-Derived Hyperbranched Epoxy Thermosets with High Mechanical Strength and Toughness. ACS Omega, 2021, 6, 34142-34149.	3.5	3