Abdelsalam Al-Sarkhi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4028845/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Analogy between Vertical Upward Cap Bubble and Horizontal Plug Flow. SPE Journal, 2022, 27, 1577-1596.	1.7	7
2	Theoretical study and experimental measurement of the gas liquid two-phase flow through a vertical Venturi meter. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021, 235, 1567-1584.	1.1	6
3	Influence of the 2-phase Flow Models on Prediction of Absorber Tube Performance. Arabian Journal for Science and Engineering, 2021, 46, 2833-2844.	1.7	0
4	Empirical Modelization of Intermittent Gas/Liquid Flow Hydrodynamic Parameters: The Importance of Distinguishing between Plug and Slug Flows. SPE Production and Operations, 2021, 36, 703-720.	0.4	8
5	Experimental investigation of liquid viscosity's effect on the flow behaviour and void fraction in a small diameter bubble column: How much do we know?. Journal of Petroleum Science and Engineering, 2021, 207, 109182.	2.1	3
6	Investigating the Behaviour of Air–Water Upward and Downward Flows: Are You Seeing What I Am Seeing?. Energies, 2021, 14, 7071.	1.6	3
7	Effect of Nano-Clay Cloisite 20A on water-in-oil stable emulsion flow at different temperatures. Journal of Petroleum Science and Engineering, 2020, 184, 106595.	2.1	7
8	Vertical upward and downward churn flow: Similarities and differences. Journal of Natural Gas Science and Engineering, 2020, 73, 103080.	2.1	14
9	Frictional Factor Correlation for Laminar High-Viscosity Oil/Gas Flow in Horizontal Pipes. SPE Production and Operations, 2020, 35, 604-609.	0.4	0
10	Flow Distribution in U- and Z-Type Manifolds: Experimental and Numerical Investigation. Arabian Journal for Science and Engineering, 2020, 45, 6005-6020.	1.7	8
11	Experimental Investigation of the Vertical Upward Single- and Two-Phase Flow Pressure Drops Through Gate and Ball Valves. Journal of Fluids Engineering, Transactions of the ASME, 2020, 142, .	0.8	11
12	Current status of CFD modeling of liquid loading phenomena in gas wells: a literature review. Journal of Petroleum Exploration and Production, 2019, 9, 1397-1411.	1.2	17
13	A novel heat exchanger design procedure for photovoltaic panel cooling application: An analytical and experimental evaluation. Applied Energy, 2019, 239, 41-56.	5.1	37
14	CFD modeling of liquid film reversal of two-phase flow in vertical pipes. Journal of Petroleum Exploration and Production, 2019, 9, 3039-3070.	1.2	5
15	Energy-Saving UHMW Polymeric Flow Aids: Catalyst and Polymerization Process Development. Catalysts, 2019, 9, 1002.	1.6	3
16	CFD modeling of two-phase annular flow toward the onset of liquid film reversal in a vertical pipe. Journal of Petroleum Science and Engineering, 2019, 175, 755-774.	2.1	18
17	A low complexity RF based sensor array for lung disease detection using inkjet printing. International Journal of RF and Microwave Computer-Aided Engineering, 2019, 29, e21586.	0.8	3
18	Water Droplet Dynamics on a Hydrophobic Surface in Relation to the Self-Cleaning of Environmental Dust. Scientific Reports, 2018, 8, 2984.	1.6	59

#	Article	IF	CITATIONS
19	An Experimental Study on the Performance of Drag-Reducing Polymers in Single- and Multiphase Horizontal Flow Using Particle Image Velocimetry. Journal of Energy Resources Technology, Transactions of the ASME, 2018, 140, .	1.4	11
20	A New Correlation for Predicting Solid Particle Erosion Caused by Gas-Sand Flow in Elbows. , 2018, , .		1
21	Pressure Drop Measurements in Venturi Meters of Different Beta Ratios for Oil–Water Flow Experiments. Arabian Journal for Science and Engineering, 2018, 43, 6355-6374.	1.7	4
22	Study of oilâ€soluble and waterâ€soluble drag reducing polymers in multiphase flows. Canadian Journal of Chemical Engineering, 2018, 96, 1012-1028.	0.9	8
23	Liquid droplet entrainment in two-phase oil-gas low-liquid-loading flow in horizontal pipes at high pressure. International Journal of Multiphase Flow, 2018, 99, 383-396.	1.6	10
24	Dimensionless oil-water stratified to non-stratified flow pattern transition. Journal of Petroleum Science and Engineering, 2017, 151, 284-291.	2.1	17
25	Do huge waves exist in horizontal gas-liquid pipe flow?. International Journal of Multiphase Flow, 2017, 96, 1-23.	1.6	30
26	A Radio Frequency Sensor Array for Dielectric Constant Estimation of Multiphase Oil Flow in Pipelines. IEEE Sensors Journal, 2017, 17, 5900-5907.	2.4	10
27	Pressure Effects on Pressure Gradient and Liquid Holdup in Two-Phase Oil-Gas Low-Liquid-Loading Flow in Horizontal Pipes. , 2017, , .		7
28	A new dimensionless number for solid particle erosion in natural gas elbows. Wear, 2017, 390-391, 80-83.	1.5	13
29	Low complexity RF sensor for multiphase oil flow estimation in pipelines. , 2017, , .		1
30	Experimental investigation of oil–water partial separation using a controlled tee junction. Journal of Petroleum Science and Engineering, 2016, 143, 187-198.	2.1	3
31	Effect of inclination and water cut on venturi pressure drop measurements for oil-water flow experiments. Journal of Petroleum Science and Engineering, 2016, 147, 636-646.	2.1	7
32	Artificial neural network application for multiphase flow patterns detection: A new approach. Journal of Petroleum Science and Engineering, 2016, 145, 548-564.	2.1	70
33	Upscaling modeling using dimensional analysis in gas–liquid annular and stratified flows. Journal of Petroleum Science and Engineering, 2016, 137, 240-249.	2.1	9
34	Positive frictional pressure gradient in vertical gas-high viscosity oil slug flow. International Journal of Heat and Fluid Flow, 2016, 59, 50-61.	1,1	11
35	New dimensionless number for gas–liquid flow in pipes. International Journal of Multiphase Flow, 2016, 81, 15-19.	1.6	18
36	Effect of water salinity on flow pattern and pressure drop in oil–water flow. Journal of Petroleum Science and Engineering, 2015, 128, 145-149.	2.1	5

ABDELSALAM AL-SARKHI

#	Article	IF	CITATIONS
37	Effect of water salinity on surfactant-stabilized water–oil emulsions flow characteristics. Experimental Thermal and Fluid Science, 2015, 64, 54-61.	1.5	44
38	Pressure drop and flow pattern of oil–water flow for low viscosity oils: Role of mixture viscosity. International Journal of Multiphase Flow, 2015, 73, 90-96.	1.6	23
39	Experimental Study on the Flow Regimes and Pressure Gradients of Air-Oil-Water Three-Phase Flow in Horizontal Pipes. Scientific World Journal, The, 2014, 2014, 1-11.	0.8	26
40	Flow characteristics of surfactant stabilized water-in-oil emulsions. Chemical Engineering Research and Design, 2014, 92, 405-412.	2.7	32
41	Experimental investigation of flow accelerated corrosion under two-phase flow conditions. Nuclear Engineering and Design, 2014, 267, 34-43.	0.8	27
42	Pressure drop reduction of stable water-in-oil emulsions using organoclays. Applied Clay Science, 2014, 95, 303-309.	2.6	25
43	Wave characteristics in gas–oil two phase flow and large pipe diameter. International Journal of Multiphase Flow, 2014, 63, 93-104.	1.6	23
44	Image Adaptive Thresholding for Multiphase Wavy Flow. , 2014, , .		1
45	Effects of Drag-Reducing Polymers on Stratified and Slug Gas–Liquid Flows in a Horizontal Pipe. Arabian Journal for Science and Engineering, 2013, 38, 699-704.	1.1	2
46	A look-up table for two-phase frictional pressure drop multiplier. Nuclear Engineering and Design, 2013, 265, 450-468.	0.8	1
47	Effect of drag reducing polymers on surfactant-stabilized water–oil emulsions flow. Experimental Thermal and Fluid Science, 2013, 51, 319-331.	1.5	18
48	Hydrodynamics model for gas–liquid stratified flow in horizontal pipes using minimum dissipated energy concept. Journal of Petroleum Science and Engineering, 2013, 108, 336-341.	2.1	6
49	Application of the Critical Heat Flux Look-Up Table to Large Diameter Tubes. Science and Technology of Nuclear Installations, 2013, 2013, 1-10.	0.3	6
50	Effect of Water Fraction on Surfactant-Stabilized Water-in-Oil Emulsion Flow Characteristics. , 2013, ,		2
51	Pressure Drop Reduction of Stable Emulsions: Role of Aqueous Phase Salinity. , 2013, , .		11
52	Pressure Drop Reduction of Stable Water-in-Oil Emulsion Flow: Role of Water Fraction and Pipe Diameter. , 2013, , .		2
53	MODELING OF THE DROPLET ENTRAINMENT FRACTION IN ADIABATIC GAS-LIQUID ANNULAR FLOW. Multiphase Science and Technology, 2013, 25, 1-23.	0.2	4
54	Oil-Water Two-Phase Flow Redistribution in Horizontal and Near Horizontal Pipelines. International Journal of Fluid Mechanics Research, 2013, 40, 494-511.	0.4	1

#	Article	IF	CITATIONS
55	Pressure Drop Reduction of Stable Water-in-Oil Emulsion Flow: Role of Water Fraction and Pipe Diameter. , 2013, , .		2
56	On the development of integrated sensor for multiphase measurements. , 2013, , .		0
57	Drift-Velocity Closure Relationships for Slug Two-Phase High-Viscosity Oil Flow in Pipes. SPE Journal, 2012, 17, 593-601.	1.7	41
58	Liquid Entrainment in Annular Gas/Liquid Flow in Inclined Pipes. SPE Journal, 2012, 17, 617-630.	1.7	28
59	Flow and mass transfer downstream of an orifice under flow accelerated corrosion conditions. Nuclear Engineering and Design, 2012, 252, 52-67.	0.8	75
60	Inclination effects on wave characteristics in annular gas–liquid flows. AICHE Journal, 2012, 58, 1018-1029.	1.8	56
61	Effect of mixing on frictional loss reduction by drag reducing polymer in annular horizontal two-phase flows. International Journal of Multiphase Flow, 2012, 39, 186-192.	1.6	20
62	Modeling of droplet entrainment in co-current annular two-phase flow: A new approach. International Journal of Multiphase Flow, 2012, 39, 21-28.	1.6	39
63	Effect of drag reducing polymers on water holdup in an oil–water horizontal flow. International Journal of Multiphase Flow, 2012, 44, 29-33.	1.6	30
64	Comment on: "Droplet entrainment correlation in vertical upward co-current annular two-phase flowâ€; by Pravin Sawant, Mamoru Ishii, Michitsugu Mori, Nuclear Engineering and Design 238 (2008) 1342–1352. Nuclear Engineering and Design, 2011, 241, 3357-3358.	0.8	0
65	Friction factor correlations for gas–liquid/liquid–liquid flows with drag-reducing polymers in horizontal pipes. International Journal of Multiphase Flow, 2011, 37, 501-506.	1.6	18
66	Comment on "Correlation of entrainment for annular flow in horizontal pipesâ€; by Pan, L., Hanratty, T.J., Int. J. Multiphase flow, 28(3), (2002), pp. 385–408. International Journal of Multiphase Flow, 2011, 37, 535-536.	1.6	4
67	Modeling of oil–water flow using energy minimization concept. International Journal of Multiphase Flow, 2011, 37, 326-335.	1.6	21
68	Liquid Entrainment in Annular Gas/Liquid Flow in Inclined Pipes. , 2010, , .		17
69	Power-Law Correlation for Two-Phase Pressure Drop of Gas/Liquid Flows in Horizontal Pipelines. SPE Projects, Facilities and Construction, 2010, 5, 176-182.	0.2	11
70	Drag reduction with polymers in gas-liquid/liquid-liquid flows in pipes: A literature review. Journal of Natural Gas Science and Engineering, 2010, 2, 41-48.	2.1	68
71	Effect of drag reducing polymers on oil–water flow in a horizontal pipe. International Journal of Multiphase Flow, 2009, 35, 516-524.	1.6	74
72	Performance of a spark ignition engine under the effect of friction using a gas mixture model. Journal of the Energy Institute, 2009, 82, 197-205.	2.7	22

ABDELSALAM AL-SARKHI

#	Article	IF	CITATIONS
73	Modeling of a geothermal standing column well. International Journal of Energy Research, 2008, 32, 306-317.	2.2	30
74	Performance evaluation of standing column well for potential application of ground source heat pump in Jordan. Energy Conversion and Management, 2008, 49, 863-872.	4.4	26
75	Performance analysis of air-standard Diesel cycle using an alternative irreversible heat transfer approach. Energy Conversion and Management, 2008, 49, 3301-3304.	4.4	25
76	Effects of High Oil Viscosity on Drift Velocity for Upward Inclined Pipes. , 2008, , .		8
77	Effect of Piston Friction on the Performance of SI Engine: A New Thermodynamic Approach. Journal of Engineering for Gas Turbines and Power, 2008, 130, .	0.5	25
78	Prospects of Geothermal Energy Utilization in Jordan. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2008, 30, 1619-1627.	1.2	7
79	Characterization of Oil Water Flows in Inclined Pipes. , 2008, , .		16
80	Heat Transfer and Fluid Flow Characteristics of Separated Flows Encountered in a Backward-Facing Step Under the Effect of Suction and Blowing. Journal of Heat Transfer, 2007, 129, 1517-1528.	1.2	27
81	Thermodynamic analysis of spark-ignition engine using a gas mixture model for the working fluid. International Journal of Energy Research, 2007, 31, 1031-1046.	2.2	45
82	Performance evaluation of irreversible Miller engine under various specific heat models. International Communications in Heat and Mass Transfer, 2007, 34, 897-906.	2.9	58
83	Effect of drag reducing polymer on air–water annular flow in an inclined pipe. International Journal of Multiphase Flow, 2006, 32, 926-934.	1.6	26
84	Effects of friction and temperature-dependent specific-heat of the working fluid on the performance of a Diesel-engine. Applied Energy, 2006, 83, 153-165.	5.1	46
85	Efficiency of a Miller engine. Applied Energy, 2006, 83, 343-351.	5.1	89
86	Thermodynamic modeling of spark-ignition engine: Effect of temperature dependent specific heats. International Communications in Heat and Mass Transfer, 2006, 33, 1264-1272.	2.9	72
87	Drag reduction in two-phase annular flow of air and water in an inclined pipeline. WIT Transactions on Engineering Sciences, 2006, , .	0.0	0
88	Comparison between variable and constant height shrouded fin array subjected to forced convection heat transfer. International Communications in Heat and Mass Transfer, 2005, 32, 548-556.	2.9	13
89	Characteristics of forced convection heat transfer in vertical internally finned tube. International Communications in Heat and Mass Transfer, 2005, 32, 557-564.	2.9	31
90	Optimization Technique for Design of Automotive Air Filter Housings with Improved Fluid Dynamic Performance and Filtration. Particulate Science and Technology, 2004, 22, 235-252.	1.1	9

Abdelsalam Al-Sarkhi

#	Article	IF	CITATIONS
91	Effect of Drag Reducing Polymers on Two-Phase Gas–Liquid Flows in a Horizontal Pipe. Chemical Engineering Research and Design, 2004, 82, 1583-1588.	2.7	38
92	Medium-range planning economics of future electrical-power generation options. Energy Policy, 2004, 32, 357-366.	4.2	28
93	THE EFFECT OF SUCTION BOUNDARY CONDITION ON THE LOCAL AND AVERAGE NUSSELT NUMBERS FOR A FREE CONVECTION FLOW REGIME. International Communications in Heat and Mass Transfer, 2003, 30, 423-433.	2.9	1
94	NUMERICAL INVESTIGATION OF SHROUDED FIN ARRAY UNDER COMBINED FREE AND FORCED CONVECTION. International Communications in Heat and Mass Transfer, 2003, 30, 435-444.	2.9	17
95	Energy analysis of Jordan's commercial sector. Energy Policy, 2003, 31, 887-894.	4.2	20
96	EFFICIENCY OF MILLER ENGINE AT MAXIMUM POWER DENSITY. International Communications in Heat and Mass Transfer, 2002, 29, 1159-1167.	2.9	82
97	Effect of pipe diameter on the drop size in a horizontal annular gas–liquid flow. International Journal of Multiphase Flow, 2002, 28, 1617-1629.	1.6	59
98	Effect of drag-reducing polymers on pseudo-slugs––interfacial drag and transition to slug flow. International Journal of Multiphase Flow, 2002, 28, 1911-1927.	1.6	49
99	Effect of drag-reducing polymers on annular gas–liquid flow in a horizontal pipe. International Journal of Multiphase Flow, 2001, 27, 1151-1162.	1.6	71
100	Effect of Pipe Diameter on the Performance of Drag-Reducing Polymers in Annular Gas-Liquid Flows. Chemical Engineering Research and Design, 2001, 79, 402-408.	2.7	37
101	VELOCITY DISTRIBUTION EFFECTS IN AIR FILTER TESTING. Particulate Science and Technology, 2001, 19, 1-21.	1.1	10
102	Interaction of two opposite conical curved wall jets. International Journal of Heat and Fluid Flow, 1996, 17, 397-402.	1.1	5
103	Effects of Vehicular Air Filter Housing Configuration and Filter Resistance on Filter Flow Distributions and Filtration. , 0, , .		4
104	Effect of Carbon Nanotube Additive on the Thermal Performance of a Horizontal V-Grooved Heat Pipe. Journal of Nano Research, 0, 26, 83-88.	0.8	0
105	Controlled In-Line Generation of Stable Oil–Water Emulsions for Enhanced Oil Recovery. Arabian Journal for Science and Engineering, 0, , 1.	1.7	2