
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/402882/publications.pdf Version: 2024-02-01

YAN-RONG L

#	Article	IF	CITATIONS
1	First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophysical Journal Letters, 2019, 875, L1.	3.0	2,264
2	First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole. Astrophysical Journal Letters, 2019, 875, L6.	3.0	897
3	First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring. Astrophysical Journal Letters, 2019, 875, L5.	3.0	814
4	First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole. Astrophysical Journal Letters, 2019, 875, L4.	3.0	806
5	First M87 Event Horizon Telescope Results. II. Array and Instrumentation. Astrophysical Journal Letters, 2019, 875, L2.	3.0	618
6	First M87 Event Horizon Telescope Results. III. Data Processing and Calibration. Astrophysical Journal Letters, 2019, 875, L3.	3.0	519
7	First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon. Astrophysical Journal Letters, 2021, 910, L13.	3.0	297
8	First M87 Event Horizon Telescope Results. VII. Polarization of the Ring. Astrophysical Journal Letters, 2021, 910, L12.	3.0	215
9	Gravitational Test beyond the First Post-Newtonian Order with the Shadow of the M87 Black Hole. Physical Review Letters, 2020, 125, 141104.	2.9	190
10	SUPERMASSIVE BLACK HOLES WITH HIGH ACCRETION RATES IN ACTIVE GALACTIC NUCLEI. I. FIRST RESULTS FROM A NEW REVERBERATION MAPPING CAMPAIGN. Astrophysical Journal, 2014, 782, 45.	1.6	175
11	The Event Horizon General Relativistic Magnetohydrodynamic Code Comparison Project. Astrophysical Journal, Supplement Series, 2019, 243, 26.	3.0	175
12	SUPERMASSIVE BLACK HOLES WITH HIGH ACCRETION RATES IN ACTIVE GALACTIC NUCLEI. IV. $H < i > \hat{l}^2 < /i > TIME LAGS AND IMPLICATIONS FOR SUPER-EDDINGTON ACCRETION. Astrophysical Journal, 2015, 806, 22.$	1.6	168
13	Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. IX. 10 New Observations of Reverberation Mapping and Shortened Hl²ALags. Astrophysical Journal, 2018, 856, 6.	1.6	139
14	SUPERMASSIVE BLACK HOLES WITH HIGH ACCRETION RATES IN ACTIVE GALACTIC NUCLEI. V. A NEW SIZE–LUMINOSITY SCALING RELATION FOR THE BROAD-LINE REGION. Astrophysical Journal, 2016, 825, 126.	1.6	128
15	SUPERMASSIVE BLACK HOLES WITH HIGH ACCRETION RATES IN ACTIVE GALACTIC NUCLEI. II. THE MOST LUMINOUS STANDARD CANDLES IN THE UNIVERSE. Astrophysical Journal, 2014, 793, 108.	1.6	120
16	SUPERMASSIVE BLACK HOLES WITH HIGH ACCRETION RATES IN ACTIVE GALACTIC NUCLEI. VI. VELOCITY-RESOLVED REVERBERATION MAPPING OF THE HÎ ² LINE. Astrophysical Journal, 2016, 820, 27.	1.6	95
17	SPECTROSCOPIC INDICATION OF A CENTI-PARSEC SUPERMASSIVE BLACK HOLE BINARY IN THE GALACTIC CENTER OF NGCÂ5548. Astrophysical Journal, 2016, 822, 4.	1.6	91
18	SUPERMASSIVE BLACK HOLES WITH HIGH ACCRETION RATES IN ACTIVE GALACTIC NUCLEI. III. DETECTION OF Fe ii REVERBERATION IN NINE NARROW-LINE SEYFERT 1 GALAXIES. Astrophysical Journal, 2015, 804, 138.	1.6	90

#	Article	IF	CITATIONS
19	A BAYESIAN APPROACH TO ESTIMATE THE SIZE AND STRUCTURE OF THE BROAD-LINE REGION IN ACTIVE GALACTIC NUCLEI USING REVERBERATION MAPPING DATA. Astrophysical Journal, 2013, 779, 110.	1.6	73
20	Kinematics of the Broad-line Region of 3C 273 from a 10 yr Reverberation Mapping Campaign. Astrophysical Journal, 2019, 876, 49.	1.6	73
21	Polarimetric Properties of Event Horizon Telescope Targets from ALMA. Astrophysical Journal Letters, 2021, 910, L14.	3.0	67
22	Event Horizon Telescope observations of the jet launching and collimation in Centaurus A. Nature Astronomy, 2021, 5, 1017-1028.	4.2	65
23	Monitoring AGNs with Hβ Asymmetry. I. First Results: Velocity-resolved Reverberation Mapping. Astrophysical Journal, 2018, 869, 142.	1.6	59
24	EPISODIC RANDOM ACCRETION AND THE COSMOLOGICAL EVOLUTION OF SUPERMASSIVE BLACK HOLE SPINS. Astrophysical Journal, 2009, 697, L141-L144.	1.6	58
25	Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. VIII. Structure of the Broad-line Region and Mass of the Central Black Hole in Mrk 142. Astrophysical Journal, 2018, 869, 137.	1.6	58
26	REVERBERATION MAPPING OF THE BROAD-LINE REGION IN NGC 5548: EVIDENCE FOR RADIATION PRESSURE?. Astrophysical Journal, 2016, 827, 118.	1.6	57
27	Failed Radiatively Accelerated Dusty Outflow Model of the Broad Line Region in Active Galactic Nuclei. I. Analytical Solution. Astrophysical Journal, 2017, 846, 154.	1.6	57
28	Tidally disrupted dusty clumps as the origin of broad emission lines in active galactic nuclei. Nature Astronomy, 2017, 1, 775-783.	4.2	56
29	Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign. Astrophysical Journal Letters, 2021, 911, L11.	3.0	56
30	Event Horizon Telescope imaging of the archetypal blazar 3C 279 at an extreme 20 microarcsecond resolution. Astronomy and Astrophysics, 2020, 640, A69.	2.1	54
31	Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. XI. Accretion Disk Reverberation Mapping of Mrk 142. Astrophysical Journal, 2020, 896, 1.	1.6	53
32	Monitoring the Morphology of M87* in 2009–2017 with the Event Horizon Telescope. Astrophysical Journal, 2020, 901, 67.	1.6	51
33	AGN STORM 2. I. First results: A Change in the Weather of Mrk 817. Astrophysical Journal, 2021, 922, 151.	1.6	49
34	THE FUNDAMENTAL PLANE OF THE BROAD-LINE REGION IN ACTIVE GALACTIC NUCLEI. Astrophysical Journal Letters, 2016, 818, L14.	3.0	48
35	THEMIS: A Parameter Estimation Framework for the Event Horizon Telescope. Astrophysical Journal, 2020, 897, 139.	1.6	47
36	Verification of Radiative Transfer Schemes for the EHT. Astrophysical Journal, 2020, 897, 148.	1.6	44

#	Article	IF	CITATIONS
37	The Polarized Image of a Synchrotron-emitting Ring of Gas Orbiting a Black Hole. Astrophysical Journal, 2021, 912, 35.	1.6	43
38	COSMOLOGICAL EVOLUTION OF SUPERMASSIVE BLACK HOLES. II. EVIDENCE FOR DOWNSIZING OF SPIN EVOLUTION. Astrophysical Journal, 2012, 749, 187.	1.6	42
39	STAR FORMATION IN SELF-GRAVITATING DISKS IN ACTIVE GALACTIC NUCLEI. I. METALLICITY GRADIENTS IN BROAD-LINE REGIONS. Astrophysical Journal, 2011, 739, 3.	1.6	38
40	COSMOLOGICAL EVOLUTION OF SUPERMASSIVE BLACK HOLES. I. MASS FUNCTION AT 0 < <i>z</i> ≲ 2. Astrophysical Journal, 2011, 742, 33.	1.6	34
41	A Possible â^1⁄420 yr Periodicity in Long-term Optical Photometric and Spectral Variations of the Nearby Radio-quiet Active Galactic Nucleus Ark 120. Astrophysical Journal, Supplement Series, 2019, 241, 33.	3.0	34
42	A NEW APPROACH TO CONSTRAIN BLACK HOLE SPINS IN ACTIVE GALAXIES USING OPTICAL REVERBERATION MAPPING. Astrophysical Journal Letters, 2014, 792, L13.	3.0	33
43	A parallax distance to 3C 273 through spectroastrometry and reverberation mapping. Nature Astronomy, 2020, 4, 517-525.	4.2	33
44	Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. XII. Reverberation Mapping Results for 15 PG Quasars from a Long-duration High-cadence Campaign. Astrophysical Journal, Supplement Series, 2021, 253, 20.	3.0	27
45	ACCRETION DISKS IN ACTIVE GALACTIC NUCLEI: GAS SUPPLY DRIVEN BY STAR FORMATION. Astrophysical Journal Letters, 2010, 719, L148-L152.	3.0	26
46	A High-quality Velocity-delay Map of the Broad-line Region in NGC 5548. Astrophysical Journal Letters, 2018, 865, L8.	3.0	26
47	Accretion-modified Stars in Accretion Disks of Active Galactic Nuclei: Gravitational-wave Bursts and Electromagnetic Counterparts from Merging Stellar Black Hole Binaries. Astrophysical Journal Letters, 2021, 916, L17.	3.0	26
48	A NON-PARAMETRIC APPROACH TO CONSTRAIN THE TRANSFER FUNCTION IN REVERBERATION MAPPING. Astrophysical Journal, 2016, 831, 206.	1.6	26
49	A BAYESIAN METHOD FOR THE INTERCALIBRATION OF SPECTRA IN REVERBERATION MAPPING. Astrophysical Journal Letters, 2014, 786, L6.	3.0	24
50	Reverberation Mapping of Two Luminous Quasars: The Broad-line Region Structure and Black Hole Mass. Astrophysical Journal, 2021, 920, 9.	1.6	24
51	Kinematic Signatures of Reverberation Mapping of Close Binaries of Supermassive Black Holes in Active Galactic Nuclei. Astrophysical Journal, 2018, 862, 171.	1.6	23
52	Reverberation Mapping of the Narrow-line Seyfert 1 Galaxy I Zwicky 1: Black Hole Mass. Astrophysical Journal, 2019, 876, 102.	1.6	23
53	Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. VII. Reconstruction of Velocity-delay Maps by the Maximum Entropy Method. Astrophysical Journal, 2018, 864, 109.	1.6	21
54	Evidence for Two Distinct Broad-line Regions from Reverberation Mapping of PG 0026+129. Astrophysical Journal, 2020, 905, 75.	1.6	21

#	Article	IF	CITATIONS
55	Selective Dynamical Imaging of Interferometric Data. Astrophysical Journal Letters, 2022, 930, L18.	3.0	21
56	Interpretation of Departure from the Broad-line Region Scaling in Active Galactic Nuclei. Astrophysical Journal, 2019, 870, 84.	1.6	20
57	Active Galactic Nuclei with Ultrafast Outflows Monitoring Project: The Broad-line Region of Mrk 79 as a Disk Wind. Astrophysical Journal, 2019, 887, 135.	1.6	20
58	Untangling Optical Emissions of the Jet and Accretion Disk in the Flat-spectrum Radio Quasar 3C 273 with Reverberation Mapping Data. Astrophysical Journal, 2020, 897, 18.	1.6	19
59	Monitoring AGNs with Hβ Asymmetry. II. Reverberation Mapping of Three Seyfert Galaxies Historically Displaying Hβ Profiles with Changing Asymmetry: Mrk 79, NGC 3227, and Mrk 841. Astrophysical Journal, 2020, 905, 77.	1.6	19
60	Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. X. Optical Variability Characteristics. Astrophysical Journal, 2019, 877, 23.	1.6	18
61	IMPROVING THE FLUX CALIBRATION IN REVERBERATION MAPPING BY SPECTRAL FITTING:APPLICATION TO THE SEYFERT GALAXY MCG–6-30-15. Astrophysical Journal, 2016, 832, 197.	1.6	16
62	Broad-line Region of the Quasar PG 2130+099 from a Two-year Reverberation Mapping Campaign with High Cadence. Astrophysical Journal, 2020, 890, 71.	1.6	16
63	Accretion Disk Size Measurements of Active Galactic Nuclei Monitored by the Zwicky Transient Facility. Astrophysical Journal, 2022, 929, 19.	1.6	16
64	A new approach for measuring power spectra and reconstructing time series in active galactic nuclei. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 476, L55-L59.	1.2	13
65	A note on periodicity of long-term variations of optical continuum in active galactic nuclei. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 459, L124-L128.	1.2	12
66	Differential Interferometric Signatures of Close Binaries of Supermassive Black Holes in Active Galactic Nuclei. Astrophysical Journal, 2019, 881, 140.	1.6	11
67	Dynamical evidence from the sub-parsec counter-rotating disc for a close binary of supermassive black holes in NGC 1068. Monthly Notices of the Royal Astronomical Society, 2020, 497, 1020-1028.	1.6	11
68	EVOLUTION OF GASEOUS DISK VISCOSITY DRIVEN BY SUPERNOVA EXPLOSIONS IN STAR-FORMING GALAXIES AT HIGH REDSHIFT. Astrophysical Journal, 2009, 701, L7-L11.	1.6	11
69	EPISODIC ACTIVITIES OF SUPERMASSIVE BLACK HOLES AT REDSHIFTz⩽ 2: DRIVEN BY MERGERS?. Astrophysi Journal, 2010, 710, 878-885.	cal 1.6	10
70	The VLT Interferometric Measurements of Active Galactic Nuclei: Effects of Angular Momentum Distributions of Clouds in the Broad-line Region. Astrophysical Journal, 2019, 883, 184.	1.6	10
71	ALIGNMENTS OF BLACK HOLES WITH THEIR WARPED ACCRETION DISKS AND EPISODIC LIFETIMES OF ACTIVE GALACTIC NUCLEI. Astrophysical Journal, 2015, 804, 45.	1.6	9
72	Observational signatures of close binaries of supermassive black holes in active galactic nuclei. Research in Astronomy and Astrophysics, 2020, 20, 160.	0.7	8

#	Article	IF	CITATIONS
73	Constraints on individual supermassive binary black holes using observations of PSR J1909–3744. Research in Astronomy and Astrophysics, 2019, 19, 178.	0.7	7
74	The Variability of the Black Hole Image in M87 at the Dynamical Timescale. Astrophysical Journal, 2022, 925, 13.	1.6	6
75	Self-Consistent Dynamical Model of the Broad Line Region. Frontiers in Astronomy and Space Sciences, 2017, 4, .	1.1	5
76	Spectroastrometry and Reverberation Mapping: The Mass and Geometric Distance of the Supermassive Black Hole in the Quasar 3C 273. Astrophysical Journal, 2022, 927, 58.	1.6	5
77	Geometric Distances of Quasars Measured by Spectroastrometry and Reverberation Mapping: Monte Carlo Simulations. Astrophysical Journal, Supplement Series, 2021, 253, 57.	3.0	4
78	A Pixon-based Method for Reverberation-mapping Analysis in Active Galactic Nuclei. Astrophysical Journal, 2021, 921, 151.	1.6	4
79	Search for Continuous Gravitational-wave Signals in Pulsar Timing Residuals: A New Scalable Approach with Diffusive Nested Sampling. Astrophysical Journal, 2021, 922, 228.	1.6	4
80	EVOLUTION OF WARPED ACCRETION DISKS IN ACTIVE GALACTIC NUCLEI. I. ROLES OF FEEDING AT THE OUTER BOUNDARIES. Astrophysical Journal, 2013, 764, 16.	1.6	3
81	Cosmological Evolution of Supermassive Black Holes: Mass Functions and Spins. Proceedings of the International Astronomical Union, 2012, 8, 259-260.	0.0	1
82	X-ray properties of reverberation-mapped AGNs with super-Eddington accreting massive black holes. Proceedings of the International Astronomical Union, 2019, 15, 143-143.	0.0	0