John R Atack

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4028785/publications.pdf Version: 2024-02-01

ΙΟΗΝ Ρ. ΔΤΛΟΚ

#	Article	IF	CITATIONS
1	Multi-patient dose synthesis of [18F]Flumazenil via a copper-mediated 18F-fluorination. EJNMMI Radiopharmacy and Chemistry, 2022, 7, 5.	1.8	6
2	Tyrosine 121 moves revealing a ligandable pocket that couples catalysis to ATP-binding in serine racemase. Communications Biology, 2022, 5, 346.	2.0	1
3	Exploring Calbindin-IMPase fusion proteins structure and activity. Biochemistry and Biophysics Reports, 2022, 30, 101266.	0.7	0
4	Inhibition of a tonic inhibitory conductance in mouse hippocampal neurones by negative allosteric modulators of α5 subunit-containing γ-aminobutyric acid type A receptors: implications for treating cognitive deficits. British Journal of Anaesthesia, 2021, 126, 674-683.	1.5	8
5	Subtype Selective Î ³ -Aminobutyric Acid Type A Receptor (GABA _A R) Modulators Acting at the Benzodiazepine Binding Site: An Update. Journal of Medicinal Chemistry, 2020, 63, 3425-3446.	2.9	37
6	Pharmacological characterisation of MDI-222, a novel AMPA receptor positive allosteric modulator with an improved safety profile. Journal of Psychopharmacology, 2020, 34, 93-102.	2.0	8
7	Conformational flexibility within the small domain of human serine racemase. Acta Crystallographica Section F, Structural Biology Communications, 2020, 76, 65-73.	0.4	4
8	Crystallization and structure of ebselen bound to Cys141 of human inositol monophosphatase. Acta Crystallographica Section F, Structural Biology Communications, 2020, 76, 469-476.	0.4	9
9	A Biophysical Approach to the Identification of Novel ApoE Chemical Probes. Biomolecules, 2019, 9, 48.	1.8	7
10	The Molecular Basis for Apolipoprotein E4 as the Major Risk Factor for Late-Onset Alzheimer's Disease. Journal of Molecular Biology, 2019, 431, 2248-2265.	2.0	29
11	The X-ray structure of human calbindin-D28K: an improved model. Acta Crystallographica Section D: Structural Biology, 2018, 74, 1008-1014.	1.1	18
12	Co-crystallization of human inositol monophosphatase with the lithium mimetic L-690,330. Acta Crystallographica Section D: Structural Biology, 2018, 74, 973-978.	1.1	4
13	Evidence That Sedative Effects of Benzodiazepines Involve Unexpected GABA _A Receptor Subtypes: Quantitative Observation Studies in Rhesus Monkeys. Journal of Pharmacology and Experimental Therapeutics, 2018, 366, 145-157.	1.3	17
14	African trypanosomiasis: Synthesis & SAR enabling novel drug discovery of ubiquinol mimics for trypanosome alternative oxidase. European Journal of Medicinal Chemistry, 2017, 141, 676-689.	2.6	15
15	Combining Sanford Arylations on Benzodiazepines with the Nuisance Effect. Advanced Synthesis and Catalysis, 2017, 359, 3261-3269.	2.1	23
16	Mode of action of DNA-competitive small molecule inhibitors of tyrosyl DNA phosphodiesterase 2. Biochemical Journal, 2016, 473, 1869-1879.	1.7	30
17	Lipophilic nalmefene prodrugs to achieve a one-month sustained release. Journal of Controlled Release, 2016, 232, 196-202.	4.8	10
18	Molecular blueprint of allosteric binding sites in a homologue of the agonist-binding domain of the α7 nicotinic acetylcholine receptor. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2543-52.	3.3	102

ЈОНΝ R ΑΤΑCK

#	Article	IF	CITATIONS
19	JNJ-40255293, a Novel Adenosine A2A/A1Antagonist with Efficacy in Preclinical Models of Parkinson's Disease. ACS Chemical Neuroscience, 2014, 5, 1005-1019.	1.7	38
20	Development of an oligonucleotide-based fluorescence assay for the identification of tyrosyl-DNA phosphodiesterase 1 (TDP1) inhibitors. Analytical Biochemistry, 2014, 454, 17-22.	1.1	14
21	Pharmacological Characterization of JNJ-40068782, a New Potent, Selective, and Systemically Active Positive Allosteric Modulator of the mGlu2 Receptor and Its Radioligand [³ H]JNJ-40068782. Journal of Pharmacology and Experimental Therapeutics, 2013, 346, 514-527.	1.3	59
22	Reinforcing Effects Of Compounds Lacking Intrinsic Efficacy At α1 Subunit-Containing GABAA Receptor Subtypes in Midazolam- But Not Cocaine-Experienced Rhesus Monkeys. Neuropsychopharmacology, 2013, 38, 1006-1014.	2.8	21
23	Receptor Subtypes: Novel Targets for Novel Medicines. Advances in Pharmacological Sciences, 2012, 2012, 1-2.	3.7	3
24	Pharmacology of JNJ-37822681, a Specific and Fast-Dissociating D ₂ Antagonist for the Treatment of Schizophrenia. Journal of Pharmacology and Experimental Therapeutics, 2012, 342, 91-105.	1.3	33
25	Preclinical and clinical pharmacology of TPA023B, a GABA _A receptor α2/α3 subtype-selective partial agonist. Journal of Psychopharmacology, 2011, 25, 329-344.	2.0	47
26	GABAA Receptor Subtype-Selective Modulators. II. α5-Selective Inverse Agonists for Cognition Enhancement. Current Topics in Medicinal Chemistry, 2011, 11, 1203-1214.	1.0	74
27	The discovery and synthesis of JNJ 31020028, a small molecule antagonist of the Neuropeptide Y Y2 receptor. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 5552-5556.	1.0	13
28	Contribution of GABAA receptors containing $\hat{I}\pm3$ subunits to the therapeutic-related and side effects of benzodiazepine-type drugs in monkeys. Psychopharmacology, 2011, 215, 311-319.	1.5	24
29	GABAA Receptor Subtype-Selective Modulators. I. α2/α3-Selective Agonists as Non-Sedating Anxiolytics. Current Topics in Medicinal Chemistry, 2011, 11, 1176-1202.	1.0	116
30	MRK-409 (MK-0343), a GABAA receptor subtype-selective partial agonist, is a non-sedating anxiolytic in preclinical species but causes sedation in humans. Journal of Psychopharmacology, 2011, 25, 314-328.	2.0	53
31	In vitro and in vivo characterization of JNJ-31020028 (N-(4-{4-[2-(diethylamino)-2-oxo-1-phenylethyl]piperazin-1-yl}-3-fluorophenyl)-2-pyridin-3-ylbenzamide), a selective brain penetrant small molecule antagonist of the neuropeptide Y Y2 receptor. Psychopharmacology, 2010, 208, 265-277	1.5	45
32	Preclinical and clinical pharmacology of the GABAA receptor α5 subtype-selective inverse agonist α5IA. , 2010, 125, 11-26.		101
33	Novel substituted pyrrolidines are high affinity histamine H3 receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 2755-2760.	1.0	4
34	Pre-clinical characterization of aryloxypyridine amides as histamine H3 receptor antagonists: Identification of candidates for clinical development. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 4210-4214.	1.0	24
35	Cocaine effects on mouse incentive-learning and human addiction are linked to α2 subunit-containing GABA _A receptors. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2289-2294.	3.3	91
36	Benzodiazepine Binding Site Occupancy by the Novel GABA _A Receptor Subtype-Selective Drug 7-(1,1-Dimethylethyl)-6-(2-ethyl- <i>2H</i> -1,2,4-triazol-3-ylmethoxy)-3-(2-fluorophenyl)-1,2,4-triazolo[4,3- <i>b</i>]pysridaz	zine35

(TPAO23) in Rats, Primates, and Humans. Journal of Pharmacology and Experimental Therapeutics, 2010, 332, 17-25.

JOHN R ΑΤΑCK

#	Article	IF	CITATIONS
37	Reducing Abuse Liability of GABA _A /Benzodiazepine Ligands via Selective Partial Agonist Efficacy at α ₁ and α _{2/3} Subtypes. Journal of Pharmacology and Experimental Therapeutics, 2010, 332, 4-16.	1.3	62
38	Discriminative stimulus effects of L-838,417 (7-tert-butyl-3-(2,5-difluoro-phenyl)-6-(2-methyl-2H-[1,2,4]triazol-3-ylmethoxy)-[1,2,4]triazolo[4,3-b]pyridazine): Role of GABAA receptor subtypes. Neuropharmacology, 2010, 58, 357-364.	2.0	11
39	Development of Subtype-Selective GABAA Receptor Compounds for the Treatment of Anxiety, Sleep Disorders and Epilepsy. , 2010, , 25-72.		9
40	In Vitro and in Vivo Properties of 3- <i>tert</i> -Butyl-7-(5-methylisoxazol-3-yl)-2-(1-methyl-1 <i>H</i> -1,2,4-triazol-5-ylmethoxy)-pyrazolo[1,5- <i>d(MRK-016), a GABA_A Receptor α5 Subtype-Selective Inverse Agonist. Journal of Pharmacology and Experimental Therapeutics, 2009, 331, 470-484.</i>	>]-[1,2,4]t 1.3	triazine 63
41	GABAA Receptor α2/α3 Subtype-Selective Modulators as Potential Nonsedating Anxiolytics. Current Topics in Behavioral Neurosciences, 2009, 2, 331-360.	0.8	55
42	Subtype-Selective GABAA Receptor Modulation Yields a Novel Pharmacological Profile: The Design and Development of TPA023. Advances in Pharmacology, 2009, 57, 137-185.	1.2	39
43	The complexity of the GABAA receptor shapes unique pharmacological profiles. Drug Discovery Today, 2009, 14, 866-875.	3.2	165
44	The plasma–occupancy relationship of the novel GABA _A receptor benzodiazepine site ligand, α5IA, is similar in rats and primates. British Journal of Pharmacology, 2009, 157, 796-803.	2.7	12
45	GABAAReceptor Subtype-Selective Efficacy: TPA023, an α2/α3 Selective Non-sedating Anxiolytic and α5IA, an α5 Selective Cognition Enhancer. CNS Neuroscience & Therapeutics, 2008, 14, 25-35.	4.0	21
46	Identification of the domains in RXFP4 (GPCR142) responsible for the high affinity binding and agonistic activity of INSL5 at RXFP4 compared to RXFP3 (GPCR135). European Journal of Pharmacology, 2008, 590, 43-52.	1.7	18
47	Alpha2-containing GABAA receptors are involved in mediating stimulant effects of cocaine. Pharmacology Biochemistry and Behavior, 2008, 90, 9-18.	1.3	37
48	In Vivo Characterization and Dynamic Receptor Occupancy Imaging of TPA023B, an α2/α3/α5 Subtype Selective γ-Aminobutyric Acid–A Partial Agonist. Biological Psychiatry, 2008, 64, 153-161.	0.7	23
49	Effects of SB-269970, a 5-HT7 receptor antagonist, in mouse models predictive of antipsychotic-like activity. Behavioural Pharmacology, 2008, 19, 153-159.	0.8	55
50	GABA _A Receptor Subtype-Selective Efficacy: TPA023, an α2/α3 Selective Non-sedating Anxiolytic and α5IA, an α5 Selective Cognition Enhancer. CNS Neuroscience and Therapeutics, 2008, 14, 25-35.	1.9	36
51	R3(BΔ23–27)R/I5 Chimeric Peptide, a Selective Antagonist for GPCR135 and GPCR142 over Relaxin Receptor LGR7. Journal of Biological Chemistry, 2007, 282, 25425-25435.	1.6	131
52	The Novel Î ³ Secretase Inhibitor N-[cis-4-[(4-Chlorophenyl)sulfonyl]-4-(2,5-difluorophenyl)cyclohexyl]-1,1,1-trifluoromethanesulfonamide (MRK-560) Reduces Amyloid Plaque Deposition without Evidence of Notch-Related Pathology in the In 2576 Mouse Journal of Pharmacology and Experimental Therapeutics, 2007, 320, 552-558	1.3	84
53	[7-Chloro-5-(2-chlorophenyl)-1,3-dihydro-3-hydroxy-2H-1,4-benzodiazepin-2-one] Occupancy of Rat Brain ^{[3} -Aminobutyric AcidA Receptors Measured Using in Vivo [3H]Flumazenil (8-Fluoro) Tj ETQq1 1 0.784314 rgBT /Ov	verlock 10 1.3	Tf 50 102
54	Selective Blockade of 5-Hydroxytryptamine (5-HT)7 Receptors Enhances 5-HT Transmission, Antidepressant-Like Behavior, and Rapid Eye Movement Sleep Suppression Induced by Citalopram in Rodents. Journal of Pharmacology and Experimental Therapeutics, 2007, 321, 690-698.	1.3	149

John R Ατάςκ

#	Article	IF	CITATIONS
55	Differential contribution of GABAA receptor subtypes to the anticonvulsant efficacy of benzodiazepine site ligands. Journal of Psychopharmacology, 2007, 21, 384-391.	2.0	49
56	Contribution of specific binding to the central benzodiazepine site to the brain concentrations of two novel benzodiazepine site ligands. Biopharmaceutics and Drug Disposition, 2007, 28, 275-282.	1.1	3
57	Imidazo[1,2-a]pyrimidines as Functionally Selective and Orally Bioavailable GABAAα2/α3 Binding Site Agonists for the Treatment of Anxiety Disorders. Journal of Medicinal Chemistry, 2006, 49, 35-38.	2.9	127
58	Discovery of Imidazo[1,2-b][1,2,4]triazines as GABAA α2/3 Subtype Selective Agonists for the Treatment of Anxiety. Journal of Medicinal Chemistry, 2006, 49, 1235-1238.	2.9	44
59	A Pyridazine Series of α2/α3 Subtype Selective GABAAAgonists for the Treatment of Anxiety. Journal of Medicinal Chemistry, 2006, 49, 2600-2610.	2.9	25
60	The in vivo properties of pagoclone in rat are most likely mediated by 5′-hydroxy pagoclone. Neuropharmacology, 2006, 50, 677-689.	2.0	17
61	Comparison of in vivo and ex vivo [3H]flumazenil binding assays to determine occupancy at the benzodiazepine binding site of rat brain GABAA receptors. Neuropharmacology, 2006, 51, 168-172.	2.0	30
62	L-655,708 enhances cognition in rats but is not proconvulsant at a dose selective for α5-containing GABAA receptors. Neuropharmacology, 2006, 51, 1023-1029.	2.0	162
63	Detection of gender differences in rat lens proteins using 2-D-DIGE. Proteomics, 2006, 6, 667-676.	1.3	13
64	Both α2 and α3 GABAAreceptor subtypes mediate the anxiolytic properties of benzodiazepine site ligands in the conditioned emotional response paradigm. European Journal of Neuroscience, 2006, 23, 2495-2504.	1.2	99
65	Pharmacokinetics and metabolism studies on		

JOHN R ΑΤΑCK

#	Article	IF	CITATIONS
73	In Vivo Characterization of AÎ ² (40) Changes in Brain and Cerebrospinal Fluid Using the Novel Î ³ -Secretase Inhibitor N-[cis-4-[(4-Chlorophenyl)sulfonyl]-4-(2,5-difluorophenyl)cyclohexyl]-1,1,1-trifluoromethanesulfonamide (MRK-560) in the Rat. Journal of Pharmacology and Experimental Therapeutics, 2006, 317, 786-790.	1.3	62
74	An Inverse Agonist Selective for α5 Subunit-Containing GABAA Receptors Enhances Cognition. Journal of Pharmacology and Experimental Therapeutics, 2006, 316, 1335-1345.	1.3	223
75	RAT PHARMACOKINETICS AND PHARMACODYNAMICS OF A SUSTAINED RELEASE FORMULATION OF THE GABAA α5-SELECTIVE COMPOUND L-655,708. Drug Metabolism and Disposition, 2006, 34, 887-893.	1.7	24
76	TPA023 [7-(1,1-Dimethylethyl)-6-(2-ethyl-2H-1,2,4-triazol-3-ylmethoxy)-3-(2-fluorophenyl)-1,2,4-triazolo[4,3-b]pyridazine], an Agonist Selective for α2- and α3-Containing GABAA Receptors, Is a Nonsedating Anxiolytic in Rodents and Primates. Journal of Pharmacology and Experimental Therapeutics, 2006, 316, 410-422.	1.3	172
77	Development of Subtype Selective GABA _A Modulators. CNS Spectrums, 2005, 10, 21-27.	0.7	46
78	Pyrazolopyridinones as functionally selective GABAA ligands. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 4998-5002.	1.0	14
79	Anxiogenic properties of an inverse agonist selective for α 3 subunit-containing GABAA receptors. British Journal of Pharmacology, 2005, 144, 357-366.	2.7	120
80	Selective labelling of diazepam-insensitive GABAA receptors in vivo using [3 H]Ro 15-4513. British Journal of Pharmacology, 2005, 146, 817-825.	2.7	17
81	Role of GABAA α5-containing receptors in ethanol reward: The effects of targeted gene deletion, and a selective inverse agonist. European Journal of Pharmacology, 2005, 526, 240-250.	1.7	37
82	Evidence for a Significant Role of Â3-Containing GABAA Receptors in Mediating the Anxiolytic Effects of Benzodiazepines. Journal of Neuroscience, 2005, 25, 10682-10688.	1.7	221
83	Different GABAA receptor subtypes mediate the anxiolytic, abuse-related, and motor effects of benzodiazepine-like drugs in primates. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 915-920.	3.3	182
84	Discovery of Functionally Selective 7,8,9,10-Tetrahydro-7,10-ethano-1,2,4-triazolo[3,4-a]phthalazines as GABAAReceptor Agonists at the α3Subunit. Journal of Medicinal Chemistry, 2005, 48, 1367-1383.	2.9	56
85	Quantitative Measurement of Changes in Amyloid-Î ² (40) in the Rat Brain and Cerebrospinal Fluid following Treatment with the Î ³ -Secretase Inhibitor LY-411575 [N2-[(2S)-2-(3,5-Difluorophenyl)-2-hydroxyethanoyl]-N1-[(7S)-5-methyl-6-oxo-6,7-dihydro-5H-dibenzo[b,d]azepin- Journal of Pharmacology and Experimental Therapeutics, 2005, 313, 902-908.	7-yi]-l-alar	103 ninamide].
86	In vivo labelling of α5 subunit-containing GABA receptors using the selective radioligand [H]L-655,708. Neuropharmacology, 2005, 49, 220-229.	2.0	28
87	The benzodiazepine binding site of GABAAreceptors as a target for the development of novel anxiolytics. Expert Opinion on Investigational Drugs, 2005, 14, 601-618.	1.9	163
88	7-(1,1-Dimethylethyl)-6-(2-ethyl-2H-1,2,4- triazol-3-ylmethoxy)-3-(2-fluorophenyl)- 1,2,4-triazolo[4,3-b]pyridazine:  A Functionally Selective γ-Aminobutyric AcidA (GABAA) α2/α3-Subtype Selective Agonist That Exhibits Potent Anxiolytic Activity but Is Not Sedating in Animal Models. Journal of Medicinal Chemistry, 2005, 48, 7089-7092.	2.9	48
89	A New Pyridazine Series of GABAAα5 Ligands. Journal of Medicinal Chemistry, 2005, 48, 6004-6011.	2.9	16
90	Tricyclic pyridones as functionally selective human GABAAα2/3 receptor-ion channel ligands. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 1679-1682.	1.0	17

John R Atack

#	Article	IF	CITATIONS
91	3,4-Dihydronaphthalen-1(2H)-ones: novel ligands for the benzodiazepine site of $\hat{1}\pm5$ -containing GABAA receptors. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 2871-2875.	1.0	17
92	2,5-Dihydropyrazolo[4,3-c]pyridin-3-ones: functionally selective benzodiazepine binding site ligands on the GABAA receptor. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 3441-3444.	1.0	23
93	Development of Selective Ligands for Benzodiazepine Receptor Subtypes by Manipulating the Substituents at Positions 3- and 7- of Optically Active BzR Ligands. Medicinal Chemistry Research, 2004, 13, 259-281.	1.1	17
94	3,4-Dihydronaphthalen-1(2H)-ones: Novel Ligands for the Benzodiazepine Site of α5-Containing GABAA Receptors ChemInform, 2004, 35, no.	0.1	0
95	3-Phenyl-6-(2-pyridyl)methyloxy-1,2,4-triazolo[3,4-a]phthalazines and Analogues:  High-Affinity γ-Aminobutyric Acid-A Benzodiazepine Receptor Ligands with α2, α3, and I±5-Subtype Binding Selectivity over α1. Journal of Medicinal Chemistry, 2004, 47, 1807-1822.	2.9	131
96	Synthesis and Biological Evaluation of 3-Heterocyclyl-7,8,9,10-tetrahydro-(7,10-ethano)-1,2,4-triazolo[3,4-a]phthalazines and Analogues as Subtype-Selective Inverse Agonists for the GABAAα5 Benzodiazepine Binding Site. Journal of Medicinal Chemistry, 2004, 47, 3642-3657.	2.9	65
97	Selective, Orally Active γ-Aminobutyric AcidA α5 Receptor Inverse Agonists as Cognition Enhancers. Journal of Medicinal Chemistry, 2004, 47, 2176-2179.	2.9	106
98	An Orally Bioavailable, Functionally Selective Inverse Agonist at the Benzodiazepine Site of GABAA α5 Receptors with Cognition Enhancing Properties. Journal of Medicinal Chemistry, 2004, 47, 5829-5832.	2.9	111
99	Subtype-selective GABAergic drugs facilitate extinction of mouse operant behaviour. Neuropharmacology, 2004, 46, 171-178.	2.0	30
100	GABAA α1 subunit knock-out mice do not show a hyperlocomotor response following amphetamine or cocaine treatment. Neuropharmacology, 2003, 44, 190-198.	2.0	27
101	Identification of a Novel, Selective GABAAα5 Receptor Inverse Agonist Which Enhances Cognition. Journal of Medicinal Chemistry, 2003, 46, 2227-2240.	2.9	142
102	Sedation and Anesthesia Mediated by Distinct GABA _A Receptor Isoforms. Journal of Neuroscience, 2003, 23, 8608-8617.	1.7	266
103	Anxioselective Compounds Acting at the GABAA Receptor Benzodiazepine Binding Site. CNS and Neurological Disorders, 2003, 2, 213-232.	4.3	116
104	6,7-Dihydro-2-benzothiophen-4(5H)-ones:  A Novel Class of GABA-A α5 Receptor Inverse Agonists. Journal of Medicinal Chemistry, 2002, 45, 1176-1179.	2.9	27
105	Inositol monophosphatase activity in normal, Down syndrome and dementia of the Alzheimer type CSF. Neurobiology of Aging, 2002, 23, 389-396.	1.5	4
106	Enhanced Learning and Memory and Altered GABAergic Synaptic Transmission in Mice Lacking the α5 Subunit of the GABA _A Receptor. Journal of Neuroscience, 2002, 22, 5572-5580.	1.7	591
107	Generation and Characterisation of Stable Cell Lines Expressing Recombinant Human N-Methyl-d-Aspartate Receptor Subtypes. Journal of Neurochemistry, 2002, 66, 2239-2247.	2.1	47
108	3-Heteroaryl-2-pyridones: Benzodiazepine Site Ligands with Functional Selectivity for α2/α3-Subtypes of Human GABAAReceptor-Ion Channels. Journal of Medicinal Chemistry, 2002, 45, 1887-1900.	2.9	118

John R Ατάςκ

#	Article	IF	CITATIONS
109	Effect of α Subunit on Allosteric Modulation of Ion Channel Function in Stably Expressed Human Recombinant γ-Aminobutyric Acid _A Receptors Determined Using ³⁶ Cl Ion Flux. Molecular Pharmacology, 2001, 59, 1108-1118.	1.0	140
110	Loss of the Major GABA _A Receptor Subtype in the Brain Is Not Lethal in Mice. Journal of Neuroscience, 2001, 21, 3409-3418.	1.7	215
111	Sedative but not anxiolytic properties of benzodiazepines are mediated by the GABAA receptor $\hat{l}\pm 1$ subtype. Nature Neuroscience, 2000, 3, 587-592.	7.1	898
112	The 5HT1B receptor agonist, CP-93129, inhibits [3 H]-GABA release from rat globus pallidus slices and reverses akinesia following intrapallidal injection in the reserpine-treated rat. British Journal of Pharmacology, 2000, 130, 1927-1932.	2.7	53
113	Kindling Induced by Pentylenetetrazole in Rats is Not Directly Associated With Changes in the Expression of NMDA or Benzodiazepine Receptors. Pharmacology Biochemistry and Behavior, 2000, 65, 743-750.	1.3	16
114	Changes in [3H]zolpidem and [3H]Ro 15-1788 binding in rat globus pallidus and substantia nigra pars reticulata following a nigrostriatal tract lesion. Brain Research, 2000, 862, 280-283.	1.1	13
115	Preferential Coassembly of α4 and δ Subunits of the γ-Aminobutyric Acid _A Receptor in Rat Thalamus. Molecular Pharmacology, 1999, 56, 110-115.	1.0	213
116	Autoradiographic localization of α5 subunit-containing GABAA receptors in rat brain. Brain Research, 1999, 822, 265-270.	1.1	145
117	Regional Differences in the Inhibition of Mouse In Vivo [3H]Ro 15-1788 Binding Reflect Selectivity for α1 versus α2 and α3 Subunit-Containing GABAA Receptors. Neuropsychopharmacology, 1999, 20, 255-262.	2.8	69
118	Benzodiazepine modulation of recombinant α1β3γ2 GABAA receptor function efficacy determination using the Cytosensor microphysiometer. European Journal of Pharmacology, 1998, 359, 261-269.	1.7	8
119	Cerebrospinal fluid inositol monophosphatase: elevated activity in depression and neuroleptic-treated schizophrenia. Biological Psychiatry, 1998, 44, 433-437.	0.7	14
120	Rat and Human Hippocampal α5 Subunit-Containing γ-Aminobutyric Acid _A Receptors Have α5β3γ2 Pharmacological Characteristics. Molecular Pharmacology, 1998, 54, 928-933.	² 1.0	110
121	Inositol monophosphatase inhibitors—Lithium mimetics?. , 1997, 17, 215-224.		33
122	Inositol monophosphatase, the putative therapeutic target for lithium. Brain Research Reviews, 1996, 22, 183-190.	9.1	53
123	Inositol monophosphatase — a putative target for Li+ in the treatment of bipolar disorder. Trends in Neurosciences, 1995, 18, 343-349.	4.2	104
124	Structure and mechanism of inositol monophosphatase. FEBS Letters, 1995, 361, 1-7.	1.3	74
125	Inositol monophosphatase inhibitors: A novel treatment for bipolar disorder?. Biological Psychiatry, 1995, 37, 761-763.	0.7	10
126	Decreased CSF inositol monophosphatase activity after lithium treatment. Psychiatry Research, 1994, 53, 103-105.	1.7	7

ЈОНN R АТАСК

#	Article	IF	CITATIONS
127	Structural Studies of Metal Binding by Inositol Monophosphatase: Evidence for Two-Metal Ion Catalysis. Biochemistry, 1994, 33, 9468-9476.	1.2	110
128	Structural Analysis of Inositol Monophosphatase Complexes with Substrates. Biochemistry, 1994, 33, 9460-9467.	1.2	90
129	4-hydroxyphenoxymethylene bisphosphonic acid derivatives: potent, non-hydrolysable inhibitors of MYO-inositol monophosphatase. Bioorganic and Medicinal Chemistry Letters, 1993, 3, 141-146.	1.0	7
130	In Vitro and In Vivo Inhibition of Inositol Monophosphatase by the Bisphosphonate L-690,330. Journal of Neurochemistry, 1993, 60, 652-658.	2.1	84
131	Probing the role of metal ions in the mechanism of inositol monophosphatase by site-directed mutagenesis. FEBS Journal, 1993, 217, 281-287.	0.2	59
132	Evidence for a membrane lipid defect in Alzheimer disease. Molecular and Chemical Neuropathology, 1993, 19, 37-46.	1.0	36
133	Regional specificity of membrane instability in Alzheimer's disease brain. Brain Research, 1993, 615, 355-357.	1.1	31
134	Characterization of inositol monophosphatase in human cerebrospinal fluid. Brain Research, 1993, 613, 305-308.	1.1	13
135	Characterization of the effects of lithium on phosphatidylinositol (PI) cycle activity in human muscarinic ml receptorâ€ŧransfected CHO cells. British Journal of Pharmacology, 1993, 110, 809-815.	2.7	15
136	Measurement of Lithium-Induced Changes in Mouse Inositol(1)Phosphate Levels In Vivo. Journal of Neurochemistry, 1992, 59, 1946-1954.	2.1	18
137	In vitro and in vivo inhibition of prolyl endopeptidase. European Journal of Pharmacology, 1991, 205, 157-163.	1.7	52
138	Physovenines: Efficient Synthesis of (?)- and (+)-Physovenine and Synthesis of Carbarnate Analogues of (?)-Physovenine. Anticholinesterase Activity and Analgesic Properties of Optically Active Physovenines. Helvetica Chimica Acta, 1991, 74, 761-766.	1.0	38
139	pp60c-src Kinase expression in brain of adult rats in relation to age. Experimental Gerontology, 1990, 25, 47-54.	1.2	4
140	Physostigmine treatment of progressive supranuclear palsy. Annals of Neurology, 1989, 26, 404-407.	2.8	44
141	Bilateral changes in neocortical [3H]pirenzepine and [3H]oxotremorine-M binding following unilateral lesions of the rat nucleus basalis magnocellularis: an autoradiographic study. Brain Research, 1989, 483, 367-372.	1.1	33
142	Cerebrospinal fluid cholinesterases in aging and in dementia of the alzheimer type. Annals of Neurology, 1988, 23, 161-167.	2.8	88
143	Cerebrospinal fluid neurochemistry in the myoclonic subtype of Alzheimer's disease. Annals of Neurology, 1988, 24, 647-650.	2.8	39
144	Synthesis and anticholinesterase activity of (-)-N1-norphysostigmine, (-)-eseramine, and other N1-substituted analogs of (-)-physostigmine. Journal of Medicinal Chemistry, 1988, 31, 2297-2300.	2.9	27

ЈОНN R АТАСК

#	Article	IF	CITATIONS
145	The characterisation of molecular forms of acetylcholinesterase in Hirschsprung's disease. Clinica Chimica Acta, 1988, 171, 263-269.	0.5	3
146	Carbamate analogues of (â~')-physostigmine: In vitro inhibition of acetyl- and butyrylcholinesterase. FEBS Letters, 1988, 234, 127-130.	1.3	24
147	Cerebrospinal Fluid Somatostatin and Neuropeptide Y. Archives of Neurology, 1988, 45, 269.	4.9	69
148	Absence of biochemical heterogeneity in McArdle's disease. Journal of the Neurological Sciences, 1987, 78, 63-70.	0.3	12
149	Neural tube defect-specific acetylcholinesterase: its properties and quantitation in the detection of anencephaly and spina bifida. Clinica Chimica Acta, 1987, 170, 69-77.	0.5	0
150	Selective elevation of C-MYC transcript levels in the liver of the aging Fischer-344 rat. Biochemical and Biophysical Research Communications, 1987, 147, 1-7.	1.0	35
151	Loss and recovery of acetylcholinesterase molecular forms in the fornix-lesioned rat hippocampus. Neuroscience Letters, 1987, 79, 179-184.	1.0	9
152	CSF and serum concentrations of albumin and IgG in Alzheimer's disease. Neurobiology of Aging, 1987, 8, 21-25.	1.5	51
153	Regional analysis of rat brain proteins during senescence. Experimental Gerontology, 1987, 22, 187-198.	1.2	23
154	Molecular Forms of Butyrylcholinesterase in the Human Neocortex During Development and Degeneration of the Cortical Cholinergic System. Journal of Neurochemistry, 1987, 48, 1687-1692.	2.1	32
155	Molecular Forms of Acetylcholinesterase and Butyrylcholinesterase in Human Plasma and Cerebrospinal Fluid. Journal of Neurochemistry, 1987, 48, 1845-1850.	2.1	55
156	Commentary on antemortem markers of Alzheimer's disease. Neurobiology of Aging, 1986, 7, 398-400.	1.5	0
157	Neocortical Cholinergic Enzyme and Receptor Activities in the Human Fetal Brain. Journal of Neurochemistry, 1986, 47, 1262-1269.	2.1	36
158	Molecular Forms of Acetylcholinesterase and Butyrylcholinesterase in the Aged Human Central Nervous System. Journal of Neurochemistry, 1986, 47, 263-277.	2.1	165
159	Intralaminar Neurochemical Distributions in Human Midtemporal Cortex: Comparison Between Alzheimer's Disease and the Normal. Journal of Neurochemistry, 1984, 42, 1402-1410.	2.1	91
160	Molecular forms of acetylcholinesterase in senile dementia of Alzheimer type: Selective loss of the intermediate (10S) form. Neuroscience Letters, 1983, 40, 199-204.	1.0	217
161	A neural tube defect specific form of acetylcholinesterase in amniotic fluid. Clinica Chimica Acta, 1983, 135, 233-237.	0.5	24
162	PLASMA AND ERYTHROCYTE ACETYLCHOLINESTERASE IN SENILE DEMENTIA OF ALZHEIMER TYPE. Lancet, The, 1982, 319, 174-175.	6.3	48