List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4028705/publications.pdf Version: 2024-02-01

YUOING LI

#	Article	IF	CITATIONS
1	Transmission routes of 2019-nCoV and controls in dental practice. International Journal of Oral Science, 2020, 12, 9.	8.6	1,489
2	Oral cavity contains distinct niches with dynamic microbial communities. Environmental Microbiology, 2015, 17, 699-710.	3.8	271
3	The microbial coinfection in COVID-19. Applied Microbiology and Biotechnology, 2020, 104, 7777-7785.	3.6	206
4	Oral microbiota in human systematic diseases. International Journal of Oral Science, 2022, 14, 14.	8.6	137
5	Saliva is a nonâ€negligible factor in the spread of COVIDâ€19. Molecular Oral Microbiology, 2020, 35, 141-145.	2.7	136
6	Molecule Targeting Glucosyltransferase Inhibits Streptococcus mutans Biofilm Formation and Virulence. Antimicrobial Agents and Chemotherapy, 2016, 60, 126-135.	3.2	117
7	The characterization of conserved binding motifs and potential target genes for M. tuberculosis MtrAB reveals a link between the two-component system and the drug resistance of M. smegmatis. BMC Microbiology, 2010, 10, 242.	3.3	79
8	Regulation of oxidative response and extracellular polysaccharide synthesis by a diadenylate cyclase in <scp><i>S</i></scp> <i>treptococcus mutans</i> . Environmental Microbiology, 2016, 18, 904-922.	3.8	72
9	Inhibition of <i>Streptococcus mutans</i> polysaccharide synthesis by molecules targeting glycosyltransferase activity. Journal of Oral Microbiology, 2016, 8, 31095.	2.7	63
10	Oral Microbiota Distinguishes Acute Lymphoblastic Leukemia Pediatric Hosts from Healthy Populations. PLoS ONE, 2014, 9, e102116.	2.5	61
11	Inhibition of <i>Streptococcus mutans</i> biofilm formation by strategies targeting the metabolism of exopolysaccharides. Critical Reviews in Microbiology, 2021, 47, 667-677.	6.1	55
12	Inhibition of Streptococcus mutans biofilm formation, extracellular polysaccharide production, and virulence by an oxazole derivative. Applied Microbiology and Biotechnology, 2016, 100, 857-867.	3.6	48
13	Deletion of cas3 gene in Streptococcus mutans affects biofilm formation and increases fluoride sensitivity. Archives of Oral Biology, 2019, 99, 190-197.	1.8	46
14	A Proteome-Scale Identification of Novel Antigenic Proteins in <i>Mycobacterium tuberculosis</i> toward Diagnostic and Vaccine Development. Journal of Proteome Research, 2010, 9, 4812-4822.	3.7	43
15	Characterization of mutations in streptomycin-resistant Mycobacterium tuberculosis isolates in Sichuan, China and the association between Beijing-lineage and dual-mutation in gidB. Tuberculosis, 2016, 96, 102-106.	1.9	40
16	Genome editing in <i>Streptococcus mutans</i> through selfâ€ŧargeting CRISPR arrays. Molecular Oral Microbiology, 2018, 33, 440-449.	2.7	39
17	Inhibition of Streptococcus mutans Biofilm Formation and Virulence by Lactobacillus plantarum K41 Isolated From Traditional Sichuan Pickles. Frontiers in Microbiology, 2020, 11, 774.	3.5	38
18	Antibiofilm effect of drug-free and cationic poly(D,L-lactide-co-glycolide) nanoparticles via nano–bacteria interactions. Nanomedicine, 2018, 13, 1093-1106.	3.3	36

#	Article	IF	CITATIONS
19	A GntR Family Transcription Factor in Streptococcus mutans Regulates Biofilm Formation and Expression of Multiple Sugar Transporter Genes. Frontiers in Microbiology, 2019, 9, 3224.	3.5	33
20	Streptococcus mutans copes with heat stress by multiple transcriptional regulons modulating virulence and energy metabolism. Scientific Reports, 2015, 5, 12929.	3.3	31
21	Characterization of the clustered regularly interspaced short palindromic repeats sites in Streptococcus mutans isolated from early childhood caries patients. Archives of Oral Biology, 2017, 83, 174-180.	1.8	30
22	The Mycobacterial LysR-Type Regulator OxyS Responds to Oxidative Stress and Negatively Regulates Expression of the Catalase-Peroxidase Gene. PLoS ONE, 2012, 7, e30186.	2.5	26
23	Inhibition of Enterococcus faecalis Growth and Biofilm Formation by Molecule Targeting Cyclic di-AMP Synthetase Activity. Journal of Endodontics, 2018, 44, 1381-1388.e2.	3.1	26
24	CRISPR as systems in oral microbiome: From immune defense to physiological regulation. Molecular Oral Microbiology, 2020, 35, 41-48.	2.7	24
25	Rhodiola rosea extract inhibits the biofilm formation and the expression of virulence genes of cariogenic oral pathogen Streptococcus mutans. Archives of Oral Biology, 2020, 116, 104762.	1.8	22
26	Strategies for <i>Streptococcus mutans</i> biofilm dispersal through extracellular polymeric substances disruption. Molecular Oral Microbiology, 2022, 37, 1-8.	2.7	22
27	Acetylation of glucosyltransferases regulates Streptococcus mutans biofilm formation and virulence. PLoS Pathogens, 2021, 17, e1010134.	4.7	22
28	Characteristics of oral methicillin-resistant Staphylococcus epidermidis isolated from dental plaque. International Journal of Oral Science, 2020, 12, 15.	8.6	21
29	Expert consensus on early childhood caries management. International Journal of Oral Science, 2022, 14, .	8.6	21
30	Post-translational regulation of a <i>Porphyromonas gingivalis</i> regulator. Journal of Oral Microbiology, 2018, 10, 1487743.	2.7	20
31	EzrA, a cell shape regulator contributing to biofilm formation and competitiveness in Streptococcus mutans. Molecular Oral Microbiology, 2019, 34, 194-208.	2.7	20
32	Quantitative acetylome analysis reveals involvement of glucosyltransferase acetylation in <i>Streptococcus mutans</i> biofilm formation. Environmental Microbiology Reports, 2021, 13, 86-97.	2.4	18
33	Ursolic acid inhibits multi-species biofilms developed by Streptococcus mutans, Streptococcus sanguinis, and Streptococcus gordonii. Archives of Oral Biology, 2021, 125, 105107.	1.8	18
34	Characterization of a functional C-terminus of the Mycobacterium tuberculosis MtrA responsible for both DNA binding and interaction with its two-component partner protein, MtrB. Journal of Biochemistry, 2010, 148, 549-556.	1.7	16
35	Clobal analysis of lysine succinylome in the periodontal pathogen <i>Porphyromonas gingivalis</i> . Molecular Oral Microbiology, 2019, 34, 74-83.	2.7	16

36

Inhibition of methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) biofilm by cationic poly (D,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

#	Article	IF	CITATIONS
37	Clotrimazole and econazole inhibit Streptococcus mutans biofilm and virulence in vitro. Archives of Oral Biology, 2017, 73, 113-120.	1.8	15
38	Comprehensive profiling of protein lysine acetylation and its overlap with lysine succinylation in the <i>Porphyromonas gingivalis</i> fimbriated strain ATCC 33277. Molecular Oral Microbiology, 2020, 35, 240-250.	2.7	13
39	Utilization of the extract of Cedrus deodara (Roxb. ex D.Don) G. Don against the biofilm formation and the expression of virulence genes of cariogenic bacterium Streptococcus mutans. Journal of Ethnopharmacology, 2020, 257, 112856.	4.1	13
40	The Adc regulon mediates zinc homeostasis in <i>Streptococcus mutans</i> . Molecular Oral Microbiology, 2021, 36, 278-290.	2.7	13
41	The VicRK Two-Component System Regulates <i>Streptococcus mutans</i> Virulence. Current Issues in Molecular Biology, 2019, 32, 167-200.	2.4	13
42	Influence of Helicobacter pylori culture supernatant on the ecological balance of a dual-species oral biofilm. Journal of Applied Oral Science, 2018, 26, e20170113.	1.8	12
43	Transcriptional Profiling Reveals the Importance of RcrR in the Regulation of Multiple Sugar Transportation and Biofilm Formation in Streptococcus mutans. MSystems, 2021, 6, e0078821.	3.8	12
44	An electrospun fibrous platform for visualizing the critical pH point inducing tooth demineralization. Journal of Materials Chemistry B, 2019, 7, 4292-4298.	5.8	10
45	Salivary microbiome in patients undergoing hemodialysis and its associations with the duration of the dialysis. BMC Nephrology, 2020, 21, 414.	1.8	10
46	Nicotinamide could reduce growth and cariogenic virulence of <i>Streptococcus mutans</i> . Journal of Oral Microbiology, 2022, 14, 2056291.	2.7	10
47	Deletion of <i>csn2</i> gene affects acid tolerance and exopolysaccharide synthesis in <i>Streptococcus mutans</i> . Molecular Oral Microbiology, 2020, 35, 211-221.	2.7	9
48	Mobile Genetic Elements in Streptococci. Current Issues in Molecular Biology, 2019, 32, 123-166.	2.4	9
49	Visualized analysis of trends and hotspots in global oral microbiome research: A bibliometric study. MedComm, 2020, 1, 351-361.	7.2	7
50	Activity of <i>Ligustrum robustum</i> (Roxb.) Blume extract against the biofilm formation and exopolysaccharide synthesis of <i>Streptococcus mutans</i> . Molecular Oral Microbiology, 2021, 36, 67-79.	2.7	7
51	Shared bicycle microbial community: a potential antibiotic-resistant bacteria warehouse. Folia Microbiologica, 2021, 66, 49-58.	2.3	6
52	The Effects of Nonnutritive Sweeteners on the Cariogenic Potential of Oral Microbiome. BioMed Research International, 2021, 2021, 1-10.	1.9	6
53	Post-translational Modifications in Oral Bacteria and Their Functional Impact. Frontiers in Microbiology, 2021, 12, 784923.	3.5	6
54	Intrageneric and Intergeneric Interactions Developed by Oral Streptococci: Pivotal Role in the Pathogenesis of Oral Diseases. Current Issues in Molecular Biology, 2019, 32, 377-434.	2.4	3

#	Article	IF	CITATIONS
55	CRISPR-Cas Systems in Streptococci. Current Issues in Molecular Biology, 2019, 32, 1-38.	2.4	3
56	Deletion of the <i>yqeK</i> gene leads to the accumulation of Ap4A and reduced biofilm formation in <i>Streptococcus mutans</i> . Molecular Oral Microbiology, 2022, 37, 9-21.	2.7	3
57	Regulation of Cell Division in Streptococci: Comparing with the Model Rods. Current Issues in Molecular Biology, 2019, 32, 259-326.	2.4	ο