Ren-He Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4028560/publications.pdf

Version: 2024-02-01

30 papers

3,175 citations

20 h-index 31 g-index

32 all docs 32 docs citations

32 times ranked

4855 citing authors

#	Article	IF	Citations
1	Engineering of human mesenchymal stem cells resistant to multiple natural killer subtypes. International Journal of Biological Sciences, 2022, 18, 426-440.	6.4	3
2	The global case fatality rate of coronavirus disease 2019Âby continents and national income: A metaâ€analysis. Journal of Medical Virology, 2022, 94, 2402-2413.	5.0	46
3	mRNA vaccines for COVID-19: what, why and how. International Journal of Biological Sciences, 2021, 17, 1446-1460.	6.4	185
4	Human ESC-derived MSCs enhance fat engraftment by promoting adipocyte reaggregation, secreting CCL2 and mobilizing macrophages. Biomaterials, 2021, 272, 120756.	11.4	8
5	Stagewise keratinocyte differentiation from human embryonic stem cells by defined signal transduction modulators. International Journal of Biological Sciences, 2020, 16, 1450-1462.	6.4	13
6	COVID-19: what has been learned and to be learned about the novel coronavirus disease. International Journal of Biological Sciences, 2020, 16, 1753-1766.	6.4	579
7	PI3K/Akt signaling pathway is essential for de novo hair follicle regeneration. Stem Cell Research and Therapy, 2020, $11,144.$	5.5	51
8	Alternative splicing in mesenchymal stem cell differentiation. Stem Cells, 2020, 38, 1229-1240.	3.2	28
9	Noninvasive application of mesenchymal stem cell spheres derived from hESC accelerates wound healing in a CXCL12-CXCR4 axis-dependent manner. Theranostics, 2019, 9, 6112-6128.	10.0	33
10	Transplantation of human ESC-derived mesenchymal stem cell spheroids ameliorates spontaneous osteoarthritis in rhesus macaques. Theranostics, 2019, 9, 6587-6600.	10.0	31
11	TSA restores hair follicle-inductive capacity of skin-derived precursors. Scientific Reports, 2019, 9, 2867.	3.3	18
12	Concise Review: Mesenchymal Stem Cells Derived from Human Pluripotent Cells, an Unlimited and Quality-Controllable Source for Therapeutic Applications. Stem Cells, 2019, 37, 572-581.	3.2	76
13	PAX6 Alternative Splicing and Corneal Development. Stem Cells and Development, 2018, 27, 367-377.	2.1	13
14	A Standard Nomenclature for Referencing and Authentication of Pluripotent Stem Cells. Stem Cell Reports, 2018, 10, 1-6.	4.8	53
15	Universal Corneal Epithelial-Like Cells Derived from Human Embryonic Stem Cells for Cellularization of a Corneal Scaffold. Translational Vision Science and Technology, 2018, 7, 23.	2.2	17
16	Generation of Mesenchymal Stem Cells from Human Embryonic Stem Cells in a Complete Serum-free Condition. International Journal of Biological Sciences, 2018, 14, 1901-1909.	6.4	25
17	Scalable Generation of Mesenchymal Stem Cells from Human Embryonic Stem Cells in 3D. International Journal of Biological Sciences, 2018, 14, 1196-1210.	6.4	31
18	Intrathecal delivery of human ESC-derived mesenchymal stem cell spheres promotes recovery of a primate multiple sclerosis model. Cell Death Discovery, 2018, 4, 28.	4.7	29

#	Article	IF	CITATIONS
19	Novel Variants Identified in Multiple Sclerosis Patients From Southern China. Frontiers in Neurology, 2018, 9, 582.	2.4	4
20	Critical Role of Tumor Necrosis Factor Signaling in Mesenchymal Stem Cell-Based Therapy for Autoimmune and Inflammatory Diseases. Frontiers in Immunology, 2018, 9, 1658.	4.8	77
21	Heterogenic transplantation of bone marrow-derived rhesus macaque mesenchymal stem cells ameliorates liver fibrosis induced by carbon tetrachloride in mouse. PeerJ, 2018, 6, e4336.	2.0	15
22	Spheroidal formation preserves human stem cells for prolonged time under ambient conditions for facile storage and transportation. Biomaterials, 2017, 133, 275-286.	11.4	50
23	Recapitulating and Correcting Marfan Syndrome in a Cellular Model. International Journal of Biological Sciences, 2017, 13, 588-603.	6.4	19
24	Mesenchymal Stem Cells Attenuate Radiation-Induced Brain Injury by Inhibiting Microglia Pyroptosis. BioMed Research International, 2017, 2017, 1-11.	1.9	56
25	CRISPR/Cas9-AAV Mediated Knock-in at NRL Locus in Human Embryonic Stem Cells. Molecular Therapy - Nucleic Acids, 2016, 5, e393.	5.1	9
26	Concise Review: One Stone for Multiple Birds: Generating Universally Compatible Human Embryonic Stem Cells. Stem Cells, 2016, 34, 2269-2275.	3.2	31
27	Immune modulatory mesenchymal stem cells derived from human embryonic stem cells through a trophoblast-like stage. Stem Cells, 2016, 34, 380-391.	3.2	55
28	Human ESC-Derived MSCs Outperform Bone Marrow MSCs in the Treatment of an EAE Model of Multiple Sclerosis. Stem Cell Reports, 2014, 3, 115-130.	4.8	140
29	NANOG Is a Direct Target of TGFβ/Activin-Mediated SMAD Signaling in Human ESCs. Cell Stem Cell, 2008, 3, 196-206.	11.1	446
30	BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nature Biotechnology, 2002, 20, 1261-1264.	17.5	1,033