
Alan Collins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4027687/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Research, 2008, 160, 179-210.	1.2	2,747
2	Amalgamating eastern Gondwana: The evolution of the Circum-Indian Orogens. Earth-Science Reviews, 2005, 71, 229-270.	4.0	779
3	Late Cryogenian–Ediacaran history of the Arabian–Nubian Shield: A review of depositional, plutonic, structural, and tectonic events in the closing stages of the northern East African Orogen. Journal of African Earth Sciences, 2011, 61, 167-232.	0.9	566
4	Orogen styles in the East African Orogen: A review of the Neoproterozoic to Cambrian tectonic evolution. Journal of African Earth Sciences, 2013, 86, 65-106.	0.9	561
5	A full-plate global reconstruction of the Neoproterozoic. Gondwana Research, 2017, 50, 84-134.	3.0	474
6	The Tectonic Evolution of Central and Northern Madagascar and Its Place in the Final Assembly of Gondwana. Journal of Geology, 2002, 110, 325-339.	0.7	259
7	Peninsular India in Gondwana: The tectonothermal evolution of the Southern Granulite Terrain and its Gondwanan counterparts. Gondwana Research, 2014, 25, 190-203.	3.0	253
8	Passage through India: the Mozambique Ocean suture, high-pressure granulites and the Palghat-Cauvery shear zone system. Terra Nova, 2007, 19, 141-147.	0.9	228
9	Processes of Late Cretaceous to Late Miocene episodic thrust-sheet translation in the Lycian Taurides, SW Turkey. Journal of the Geological Society, 1998, 155, 759-772.	0.9	209
10	SHRIMP U–Pb age constraints on magmatism and high-grade metamorphism in the Salem Block, southern India. Gondwana Research, 2009, 16, 27-36.	3.0	198
11	Extending full-plate tectonic models into deep time: Linking the Neoproterozoic and the Phanerozoic. Earth-Science Reviews, 2021, 214, 103477.	4.0	183
12	Madagascar and the amalgamation of Central Gondwana. Gondwana Research, 2006, 9, 3-16.	3.0	182
13	Age and sedimentary provenance of the Southern Granulites, South India: U-Th-Pb SHRIMP secondary ion mass spectrometry. Precambrian Research, 2007, 155, 125-138.	1.2	176
14	Lycian melange, southwestern Turkey: An emplaced Late Cretaceous accretionary complex. Geology, 1997, 25, 255.	2.0	157
15	Delineating crustal domains in Peninsular India: Age and chemistry of orthopyroxene-bearing felsic gneisses in the Madurai Block. Precambrian Research, 2012, 198-199, 77-93.	1.2	157
16	High-Temperature Granite Magmatism, Crust–Mantle Interaction and the Mesoproterozoic Intracontinental Evolution of the Musgrave Province, Central Australia. Journal of Petrology, 2011, 52, 931-958.	1.1	147
17	The timing of ultrahigh-temperature metamorphism in Southern India: U–Th–Pb electron microprobe ages from zircon and monazite in sapphirine-bearing granulites. Gondwana Research, 2006, 10, 128-155.	3.0	141
18	Alternative tectonic models for the Late Palaeozoic-Early Tertiary development of Tethys in the Eastern Mediterranean region. Geological Society Special Publication, 1996, 105, 239-263.	0.8	137

#	Article	IF	CITATIONS
19	Cadomian (Ediacaran–Cambrian) arc magmatism in the Bitlis Massif, SE Turkey: Magmatism along the developing northern margin of Gondwana. Tectonophysics, 2009, 473, 99-112.	0.9	135
20	Structural and thermal history of poly-orogenic basement: U–Pb geochronology of granitoid rocks in the southern Menderes Massif, Western Turkey. Journal of the Geological Society, 2004, 161, 93-101.	0.9	129
21	Microblock amalgamation in the North China Craton: Evidence from Neoarchaean magmatic suite in the western margin of the Jiaoliao Block. Gondwana Research, 2016, 31, 96-123.	3.0	127
22	Testing models of Late Palaeozoic–Early Mesozoic orogeny in Western Turkey: support for an evolving open-Tethys model. Journal of the Geological Society, 2004, 161, 501-511.	0.9	124
23	Temporal constraints on Palaeoproterozoic eclogite formation and exhumation (Usagaran Orogen,) Tj ETQq1	0.784314 1.8	rgBT/Overlo
24	U–Pb SIMS dating of synkinematic granites: timing of core-complex formation in the northern Anatolide belt of western Turkey. Journal of the Geological Society, 2005, 162, 289-298.	0.9	116
25	Ediacaran terrane accretion within the Arabian–Nubian Shield. Gondwana Research, 2012, 21, 341-352.	3.0	112
26	Evolution of the Lycian Allochthon, western Turkey, as a north-facing Late Palaeozoic to Mesozoic rift and passive continental margin. Geological Journal, 1999, 34, 107-138.	0.6	106
27	The P-T-t architecture of a Gondwanan suture: REE, U–Pb and Ti-in-zircon thermometric constraints from the Palghat Cauvery shear system, South India. Precambrian Research, 2009, 174, 129-144.	1.2	106
28	Arabian Shield magmatic cycles and their relationship with Gondwana assembly: Insights from zircon U–Pb and Hf isotopes. Earth and Planetary Science Letters, 2014, 408, 207-225.	1.8	106
29	Neoproterozoic extensional detachment in central Madagascar: implications for the collapse of the East African Orogen. Geological Magazine, 2000, 137, 39-51.	0.9	102
30	Proterozoic Tectonostratigraphy and Paleogeography of Central Madagascar Derived from Detrital Zircon Uâ€₽b Age Populations. Journal of Geology, 2004, 112, 379-399.	0.7	100
31	Structure and age of the northern Leeuwin Complex, Western Australia: Constraints from field mapping and U–Pb isotopic analysis. Australian Journal of Earth Sciences, 2003, 50, 585-599.	0.4	99
32	Detrital footprint of the Mozambique ocean: U–Pb SHRIMP and Pb evaporation zircon geochronology of metasedimentary gneisses in eastern Madagascar. Tectonophysics, 2003, 375, 77-99.	0.9	94
33	Late Neoproterozoic and Early Cambrian palaeogeography: models and problems. Geological Society Special Publication, 2008, 294, 9-31.	0.8	92
34	Detrital zircons in basement metasedimentary protoliths unveil the origins of southern India. Bulletin of the Geological Society of America, 2014, 126, 791-811.	1.6	92
35	Prograde and retrograde growth of monazite in migmatites: AnÂexample from the Nagercoil Block, southern India. Geoscience Frontiers, 2015, 6, 373-387.	4.3	91
36	Kinematic evidence for Late Mesozoic-Miocene emplacement of the Lycian Allochthon over the Western Anatolide Belt, SW Turkey. Geological Journal, 2003, 38, 295-310.	0.6	89

#	Article	IF	CITATIONS
37	Basin redox and primary productivity within the Mesoproterozoic Roper Seaway. Chemical Geology, 2016, 440, 101-114.	1.4	89
38	Cryogenian (â^¼830Ma) mafic magmatism and metamorphism in the northern Madurai Block, southern India: A magmatic link between Sri Lanka and Madagascar?. Journal of Asian Earth Sciences, 2011, 42, 223-233.	1.0	88
39	Late Neoproterozoic-Cambrian Felsic Magmatism Along Transcrustal Shear Zones in Southern India: U-Pb Electron Microprobe Ages and Implications for the Amalgamation of the Gondwana Supercontinent. Gondwana Research, 2005, 8, 31-42.	3.0	87
40	Hot orogens and supercontinent amalgamation: A Gondwanan example from southern India. Gondwana Research, 2015, 28, 1310-1328.	3.0	86
41	Dating of lithospheric buckling: 40Ar/39Ar ages of syn-orocline strike–slip shear zones in northwestern Iberia. Tectonophysics, 2015, 643, 44-54.	0.9	85
42	Structure of the eastern margin of the East African Orogen in central Madagascar. Precambrian Research, 2003, 123, 111-133.	1.2	82
43	Evidence of Precambrian sedimentation/magmatism and Cambrian metamorphism in the Bitlis Massif, SE Turkey utilising whole-rock geochemistry and U–Pb LA-ICP-MS zircon dating. Gondwana Research, 2012, 21, 1001-1018.	3.0	82
44	The anatomy of a deep intracontinental orogen. Tectonics, 2010, 29, n/a-n/a.	1.3	81
45	High-pressure granulites at the dawn of the Proterozoic. Geology, 2012, 40, 431-434.	2.0	80
46	Recognition and tectonic implications of an extensive Neoproterozoic volcano-sedimentary rift basin along the southwestern margin of the Tarim Craton, northwestern China. Precambrian Research, 2015, 257, 65-82.	1.2	79
47	Geologically constraining India in Columbia: The age, isotopic provenance and geochemistry of the protoliths of the Ongole Domain, Southern Eastern Ghats, India. Gondwana Research, 2014, 26, 888-906.	3.0	78
48	Detrital mineral age, radiogenic isotopic stratigraphy and tectonic significance of the Cuddapah Basin, India. Gondwana Research, 2015, 28, 1294-1309.	3.0	78
49	Discovery of a Neoproterozoic basin in the Prydz belt in East Antarctica and its implications for Gondwana assembly and ultrahigh temperature metamorphism. Precambrian Research, 2008, 161, 355-388.	1.2	74
50	Shyok Suture Zone, N Pakistan: late Mesozoic–Tertiary evolution of a critical suture separating the oceanic Ladakh Arc from the Asian continental margin. Journal of Asian Earth Sciences, 2002, 20, 309-351.	1.0	73
51	Depositional age, provenance and metamorphic age of metasedimentary rocks from southern Madagascar. Gondwana Research, 2012, 21, 353-361.	3.0	73
52	Rift and plate boundary evolution across two supercontinent cycles. Global and Planetary Change, 2019, 173, 1-14.	1.6	70
53	Mesozoic reactivation of the Beishan, southern Central Asian Orogenic Belt: Insights from low-temperature thermochronology. Gondwana Research, 2017, 43, 107-122.	3.0	67
54	Crustal root of the Eastern Dharwar Craton: Zircon U–Pb age and Lu–Hf isotopic evolution of the East Salem Block, southeast India. Precambrian Research, 2014, 249, 229-246.	1.2	64

#	Article	IF	CITATIONS
55	Terrane analysis along a Neoproterozoic active margin of Gondwana: insights from U–Pb zircon geochronology. Journal of the Geological Society, 2007, 164, 57-60.	0.9	60
56	The evolution of a Gondwanan collisional orogen: A structural and geochronological appraisal from the Southern Granulite Terrane, South India. Tectonics, 2015, 34, 820-857.	1.3	60
5 7	Kinematic constraints on the Rodinia to Gondwana transition. Precambrian Research, 2017, 299, 132-150.	1.2	59
58	Complex high-strain deformation in the Usagaran Orogen, Tanzania: structural setting of Palaeoproterozoic eclogites. Tectonophysics, 2003, 375, 101-123.	0.9	58
59	Final Subduction Processes of the Paleoâ€Asian Ocean in the Alxa Tectonic Belt (NW China): Constraints From Field and Chronological Data of Permian Arcâ€Related Volcanoâ€&edimentary Rocks. Tectonics, 2018, 37, 1658-1687.	1.3	58
60	South Australian U-Pb zircon (CA-ID-TIMS) age supports globally synchronous Sturtian deglaciation. Precambrian Research, 2018, 315, 257-263.	1.2	58
61	Genesis of the Tonian Imorona–Itsindro magmatic Suite in central Madagascar: Insights from U–Pb, oxygen and hafnium isotopes in zircon. Precambrian Research, 2016, 281, 312-337.	1.2	56
62	Depositional constraints and age of metamorphism in southern India: U–Pb chemical (EMPA) and isotopic (SIMS) ages from the Trivandrum Block. Geological Magazine, 2005, 142, 255-268.	0.9	55
63	Review of major shale-dominated detachment and thrust characteristics in the diagenetic zone: Part I, meso- and macro-scopic scale. Earth-Science Reviews, 2017, 173, 168-228.	4.0	55
64	Differential Exhumation and Crustal Tilting in the Easternmost Tianshan (Xinjiang, China), Revealed by Lowâ€Temperature Thermochronology. Tectonics, 2017, 36, 2142-2158.	1.3	54
65	Provenance and age constraints of the South Stack Group, Anglesey, UK: U–Pb SIMS detrital zircon data Journal of the Geological Society, 2004, 161, 743-746.	0.9	52
66	Geochemical and isotopic constraints on island arc, synorogenic, post-orogenic and anorogenic granitoids in the Arabian Shield, Saudi Arabia. Lithos, 2015, 220-223, 97-115.	0.6	52
67	Amazonian Mesoproterozoic basement in the core of the Ibero-Armorican Arc: 40Ar/39Ar detrital mica ages complement the zircon's tale. Geology, 2005, 33, 637-640.	2.0	50
68	Detrital zircon analysis of the southwest Indochina terrane, central Thailand: Unravelling the Indosinian orogeny. Bulletin of the Geological Society of America, 2016, 128, 1024-1043.	1.6	48
69	New chronological constrains on the tectonic affinity of the Alxa Block, NW China. Precambrian Research, 2017, 299, 230-243.	1.2	48
70	Age and provenance of the Cryogenian to Cambrian passive margin to foreland basin sequence of the northern Paraguay Belt, Brazil. Bulletin of the Geological Society of America, 2015, 127, 76-86.	1.6	47
71	G'day Gondwana — the final accretion of a supercontinent: U–Pb ages from the post-orogenic São Vicente Granite, northern Paraguay Belt, Brazil. Gondwana Research, 2012, 21, 316-322.	3.0	46
72	Review of major shale-dominated detachment and thrust characteristics in the diagenetic zone: Part II, rock mechanics and microscopic scale. Earth-Science Reviews, 2018, 176, 19-50.	4.0	46

Alan Collins

#	Article	IF	CITATIONS
73	Spatial and temporal variation in detrital zircon age provenance of the hydrocarbon-bearing upper Roper Group, Beetaloo Sub-basin, Northern Territory, Australia. Precambrian Research, 2018, 304, 140-155.	1.2	43
74	Thermochronological insights into the structural contact between the Tian Shan and Pamirs, Tajikistan. Terra Nova, 2018, 30, 95-104.	0.9	43
75	Supra-subduction zone tectonic setting of the Muslim Bagh Ophiolite, northwestern Pakistan: Insights from geochemistry and petrology. Lithos, 2014, 202-203, 190-206.	0.6	42
76	Sea ice-free conditions during the Sturtian glaciation (early Cryogenian), South Australia. Geology, 2011, 39, 31-34.	2.0	40
77	U-Pb zircon crystallization age of the Muslim Bagh ophiolite: Enigmatic remains of an extensive pre-Himalayan arc. Geology, 2012, 40, 1099-1102.	2.0	40
78	Amazonian Mesoproterozoic basement in the core of the Ibero-Armorican Arc: 40Ar/39Ar detrital mica ages complement the zircon's tale. Geology, 2005, 33, 637.	2.0	40
79	Thermochronological and geochemical footprints of post-orogenic fluid alteration recorded in apatite: Implications for mineralisation in the Uzbek Tian Shan. Gondwana Research, 2019, 71, 1-15.	3.0	39
80	Ediacaran intracontinental channel flow. Geology, 2009, 37, 291-294.	2.0	38
81	Age and hafnium isotopic evolution of the Didesa and Kemashi Domains, western Ethiopia. Precambrian Research, 2015, 270, 267-284.	1.2	38
82	Sedimentological and provenance response to Cambrian closure of the Clymene ocean: The upper Alto Paraguai Group, Paraguay belt, Brazil. Gondwana Research, 2012, 21, 323-340.	3.0	37
83	Assessment of elemental fractionation and matrix effects during <i>in situ</i> Rb–Sr dating of phlogopite by LA-ICP-MS/MS: implications for the accuracy and precision of mineral ages. Journal of Analytical Atomic Spectrometry, 2021, 36, 322-344.	1.6	37
84	Two Cryogenian glacial successions compared: Aspects of the Sturt and Elatina sediment records of South Australia. Precambrian Research, 2011, 186, 147-168.	1.2	36
85	Late Neoproterozoic gabbro emplacement followed by early Cambrian eclogite-facies metamorphism in the Menderes Massif (W. Turkey): Implications on the final assembly of Gondwana. Gondwana Research, 2016, 34, 158-173.	3.0	36
86	Lutetian arc-type magmatism along the southern Eurasian margin: New U-Pb LA-ICPMS and whole-rock geochemical data from Marmara Island, NW Turkey. Mineralogy and Petrology, 2009, 96, 177-196.	0.4	35
87	Neoproterozoic geochronology and provenance of the Adelaide Superbasin. Precambrian Research, 2020, 350, 105849.	1.2	35
88	The Tectonic Evolution of Madagascar: Its Place in the East African Orogen. Gondwana Research, 2000, 3, 549-552.	3.0	34
89	Gemstone Mineralization in the Palghat-Cauvery Shear Zone System (Karur-Kangayam Belt), Southern India. Gondwana Research, 2003, 6, 911-918.	3.0	34
90	Zircon U-Pb-Hf isotopes, bulk-rock geochemistry and Sr-Nd-Pb isotopes from late Neoproterozoic basement in the Mahneshan area, NW Iran: Implications for Ediacaran active continental margin along the northern Gondwana and constraints on the late Oligocene crustal anatexis. Gondwana Research, 2018, 57, 48-76.	3.0	34

#	Article	IF	CITATIONS
91	Determination of the tectonic evolution from fractures, faults, and calcite twins on the southwestern margin of the Indochina Block. Tectonics, 2015, 34, 1576-1599.	1.3	33
92	Unravelling the complexities in high-grade rocks using multiple techniques: the Achankovil Zone of southern India. Contributions To Mineralogy and Petrology, 2015, 169, 1.	1.2	33
93	Evolving provenance in the Proterozoic Pranhita-Godavari Basin, India. Geoscience Frontiers, 2015, 6, 453-463.	4.3	33
94	Lowâ€Temperature Thermochronology of the Chatkalâ€Kurama Terrane (Uzbekistanâ€Tajikistan): Insights Into the Mesoâ€Cenozoic Thermal History of the Western Tian Shan. Tectonics, 2018, 37, 3954-3969.	1.3	32
95	Chapter 10 Neoproterozoic-Cambrian Biogeochemical Evolution. Neoproterozoic-Cambrian Tectonics, Global Change and Evolution: A Focus on South Western Gondwana, 2009, , 351-365.	0.2	31
96	Zircon U-Pb ages and Hf isotopic systematics of charnockite gneisses from the Ediacaran–Cambrian high-grade metamorphic terranes, southern India: Constraints on crust formation, recycling, and Gondwana correlations. Bulletin of the Geological Society of America, 2017, 129, 625-648.	1.6	31
97	Detrital apatite U-Pb and trace element analysis as a provenance tool: Insights from the Yenisey Ridge (Siberia). Lithos, 2018, 314-315, 140-155.	0.6	31
98	Thermal history and differential exhumation across the Eastern Musgrave Province, South Australia: Insights from low-temperature thermochronology. Tectonophysics, 2017, 703-704, 23-41.	0.9	30
99	Macrofabric fingerprints of Late Devonian–Early Carboniferous subduction in the Polish Variscides, the Kaczawa complex, Sudetes. Journal of the Geological Society, 2000, 157, 283-288.	0.9	29
100	Comment on "First report of garnet–corundum rocks from southern India: Implications for prograde high-pressure (eclogite-facies?) metamorphism― Earth and Planetary Science Letters, 2006, 249, 529-534.	1.8	29
101	A middle–late Ediacaran volcanoâ€sedimentary record from the eastern Arabianâ€Nubian shield. Terra Nova, 2014, 26, 120-129.	0.9	29
102	Investigating midâ€Ediacaran glaciation and final Gondwana amalgamation using coupled sedimentology and ⁴⁰ Ar/ ³⁹ Ar detrital muscovite provenance from the Paraguay Belt, Brazil. Sedimentology, 2015, 62, 130-154.	1.6	29
103	Tectono-thermal evolution of the southwestern Alxa Tectonic Belt, NW China: Constrained by apatite U-Pb and fission track thermochronology. Tectonophysics, 2018, 722, 577-594.	0.9	29
104	Evolving Marginal Terranes During Neoproterozoic Supercontinent Reorganization: Constraints From the Bemarivo Domain in Northern Madagascar. Tectonics, 2019, 38, 2019-2035.	1.3	29
105	Heterogeneous excess argon and Neoproterozoic heating in the Usagaran Orogen, Tanzania, revealed by single grain 40Ar/39Ar thermochronology. Journal of African Earth Sciences, 2004, 39, 165-176.	0.9	28
106	Tracking the Cretaceous transcontinental Ceduna River through Australia: The hafnium isotope record of detrital zircons from offshore southern Australia. Geoscience Frontiers, 2016, 7, 237-244.	4.3	28
107	Tonian Arc Magmatism in Central Madagascar: The Petrogenesis of the Imorona-Itsindro Suite. Journal of Geology, 2017, 125, 271-297.	0.7	28
108	A physiological model for tert-amyl methyl ether and tert-amyl alcohol: hypothesis testing of model structures. Toxicological Sciences, 1999, 49, 15-28.	1.4	27

#	Article	IF	CITATIONS
109	Complex structure of an upper-level shale detachment zone: Khao Khwang fold and thrust belt, Central Thailand. Journal of Structural Geology, 2014, 67, 140-153.	1.0	27
110	Cambro-Ordovician magmatism in the Delamerian orogeny: Implications for tectonic development of the southern Gondwanan margin. Gondwana Research, 2020, 81, 490-521.	3.0	27
111	Multi-scale analysis of Proterozoic shear zones: An integrated structural and geophysical study. Journal of Structural Geology, 2009, 31, 1238-1254.	1.0	26
112	Cryogenian rift-related magmatism and sedimentation: South-western Congo Craton, Namibia. Journal of African Earth Sciences, 2012, 76, 34-49.	0.9	26
113	The low-temperature thermo-tectonic evolution of the western Tian Shan, Uzbekistan. Gondwana Research, 2018, 64, 122-136.	3.0	26
114	U-Pb SHRIMP data on the crystallization age of the Gran Paradiso augengneiss, Italian Western Alps: Further evidence for Permian magmatic activity in the Alps during break-up of Pangea. Eclogae Geologicae Helveticae, 2005, 98, 363-370.	0.6	25
115	Probing into Thailand's basement: New insights from U–Pb geochronology, Sr, Sm–Nd, Pb and Lu–Hf isotopic systems from granitoids. Lithos, 2018, 320-321, 332-354.	0.6	25
116	Structure of the Sibumasu–Indochina collision, central Thailand: A section through the Khao Khwang Fold and thrust belt. Journal of Asian Earth Sciences, 2014, 95, 182-191.	1.0	24
117	Middle–late Mesoproterozoic tectonic geography of the North Australia Craton: U–Pb and Hf isotopes of detrital zircon grains in the Beetaloo Sub-basin, Northern Territory, Australia. Journal of the Geological Society, 2019, 176, 771-784.	0.9	23
118	Closure of the Proterozoic Mozambique Ocean was instigated by a late Tonian plate reorganization event. Communications Earth & Environment, 2021, 2, .	2.6	23
119	U–Pb electron probe geochronology of the Nagercoil granulites, Southern India: Implications for Gondwana amalgamation. Journal of Asian Earth Sciences, 2006, 28, 63-80.	1.0	22
120	40Ar–39Ar white mica ages reveal Neoproterozoic/Paleozoic provenance and an Alleghanian overprint in coeval Upper Ordovician–Lower Devonian rocks of Meguma and Avalonia. Tectonophysics, 2008, 461, 265-276.	0.9	22
121	Bolla Bollana boulder beds: A Neoproterozoic trough mouth fan in South Australia?. Sedimentology, 2014, 61, 978-995.	1.6	22
122	Towards unravelling the Mozambique Ocean conundrum using a triumvirate of zircon isotopic proxies on the Ambatolampy Group, central Madagascar. Tectonophysics, 2015, 662, 167-182.	0.9	22
123	Tracing final Gondwana assembly: Age and provenance of key stratigraphic units in the southern Paraguay Belt, Brazil. Precambrian Research, 2018, 307, 1-33.	1.2	22
124	Origin and tectonic evolution of the NE basement of Oman: a window into the Neoproterozoic accretionary growth of India?. Geological Magazine, 2018, 155, 1150-1174.	0.9	22
125	Geochronological and geochemical studies of mafic and intermediate dykes from the Khao Khwang Fold–Thrust Belt: Implications for petrogenesis and tectonic evolution. Gondwana Research, 2016, 36, 124-141.	3.0	21
126	Neoproterozoic deformation in central Madagascar: a structural section through part of the East African Orogen. Geological Society Special Publication, 2003, 206, 363-379.	0.8	20

#	Article	IF	CITATIONS
127	Interplay of deformation and magmatism in the Pangong Transpression Zone, eastern Ladakh, India: Implications for remobilization of the trans-Himalayan magmatic arc and initiation of the Karakoram Fault. Journal of Structural Geology, 2014, 62, 13-24.	1.0	19
128	An apatite U–Pb thermal history map for the northern Gawler Craton, South Australia. Geoscience Frontiers, 2018, 9, 1293-1308.	4.3	19
129	Using Mesoproterozoic sedimentary geochemistry to reconstruct basin tectonic geography and link organic carbon productivity to nutrient flux from a Northern Australian large igneous Province. Basin Research, 2020, 32, 1734-1750.	1.3	19
130	A Glacially Incised Canyon in Brazil: Further Evidence for Mid-Ediacaran Glaciation?. Journal of Geology, 2013, 121, 275-287.	0.7	18
131	Zircon Geochemical and Geochronological Constraints on Contaminated and Enriched Mantle Sources beneath the Arabian Shield, Saudi Arabia. Journal of Geology, 2015, 123, 463-489.	0.7	18
132	Late C arboniferous–early P ermian arc magmatism in the southâ€western A lxa T ectonic B elt (NW C) Tj ETQq0 Journal, 2019, 54, 1046-1063.	0 0 0 rgBT 0.6	/Overlock 18
133	A template for an improved rock-based subdivision of the pre-Cryogenian timescale. Journal of the Geological Society, 2022, 179, .	0.9	18
134	Dextral transpression and late Eocene magmatism in the trans-Himalayan Ladakh Batholith (North) Tj ETQq0 0 0 rg International Journal of Earth Sciences, 2013, 102, 1895-1909.	gBT /Overl 0.9	ock 10 Tf 5 17
135	Thermochronological insights into reactivation of a continental shear zone in response to Equatorial Atlantic rifting (northern Ghana). Scientific Reports, 2018, 8, 16619.	1.6	17
136	Late Paleozoic Chingiz and Saur Arc Amalgamation in West Junggar (NW China): Implications for Accretionary Tectonics in the Southern Altaids. Tectonics, 2020, 39, e2019TC005781.	1.3	17
137	Structural evolution and medium-temperature thermochronology of central Madagascar: implications for Gondwana amalgamation. Journal of the Geological Society, 2020, 177, 784-798.	0.9	17
138	How not to build a supercontinent: A reply to J.D.A. Piper. Precambrian Research, 2009, 174, 208-214.	1.2	16
139	Palaeostress magnitudes in the Khao Khwang fold-thrust belt, new insights into the tectonic evolution of the Indosinian orogeny in central Thailand. Tectonophysics, 2017, 710-711, 266-276.	0.9	16
140	Dynamic interaction between basin redox and the biogeochemical nitrogen cycle in an unconventional Proterozoic petroleum system. Scientific Reports, 2019, 9, 5200.	1.6	16
141	Unravelling the Neoproterozoic accretionary history of Oman, using an array of isotopic systems in zircon. Journal of the Geological Society, 2020, 177, 357-378.	0.9	16
142	Coupled detrital zircon U–Pb and Hf analysis of the Sibumasu Terrane: From Gondwana to northwest Thailand. Journal of Asian Earth Sciences, 2021, 211, 104709.	1.0	16
143	Neoproterozoic tectonic geography of the south-east Congo Craton in Zambia as deduced from the age and composition of detrital zircons. Geoscience Frontiers, 2019, 10, 2045-2061.	4.3	15
144	Isotopic systematics of zircon indicate an African affinity for the rocks of southernmost India. Scientific Reports, 2020, 10, 5421.	1.6	15

#	Article	IF	CITATIONS
145	Syn-deformation temperature and fossil fluid pathways along an exhumed detachment zone, khao khwang fold-thrust belt, Thailand. Tectonophysics, 2015, 655, 73-87.	0.9	14
146	Thermal history of the northern Olympic Domain, Gawler Craton; correlations between thermochronometric data and mineralising systems. Gondwana Research, 2018, 56, 90-104.	3.0	14
147	Stenian–Tonian arc magmatism in west–central Madagascar: the genesis of the Dabolava Suite. Journal of the Geological Society, 2018, 175, 111-129.	0.9	14
148	Late Neoproterozoic adakitic magmatism of the eastern Arabian Nubian Shield. Geoscience Frontiers, 2019, 10, 1981-1992.	4.3	14
149	New Zircon Ages for Precambrian Granites, Gneisses and Granulites from Central and Southern Madagascar: Significance for Correlations in East Gondwana. Gondwana Research, 1999, 2, 351-352.	3.0	13
150	Exhumation history of the Peake and Denison Inliers: insights from low-temperature thermochronology. Australian Journal of Earth Sciences, 2016, 63, 805-820.	0.4	13
151	The origin of the ultramafic rocks of the Tulu Dimtu Belt, western Ethiopia – do they represent remnants of the Mozambique Ocean?. Geological Magazine, 2019, 156, 62-82.	0.9	13
152	Late Paleozoic Exhumation of the West Junggar Mountains, NW China. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018013.	1.4	13
153	Unraveling the histories of Proterozoic shales through <i>in situ</i> Rb-Sr dating and trace element laser ablation analysis. Geology, 2022, 50, 66-70.	2.0	13
154	A very unconventional hydrocarbon play: The Mesoproterozoic Velkerri Formation of northern Australia. AAPG Bulletin, 2022, 106, 1213-1237.	0.7	13
155	Macrostructures vs microstructures in evaporite detachments: An example from the Salt Range, Pakistan. Journal of Asian Earth Sciences, 2015, 113, 922-934.	1.0	12
156	The Mesozoic exhumation history of the Karatau-Talas range, western Tian Shan, Kazakhstan-Kyrgyzstan. Tectonophysics, 2021, 814, 228977.	0.9	12
157	The Tectonic Architecture of Central Madagascar: Implication on the Evolution of the East African Orogeny. Gondwana Research, 2001, 4, 152-153.	3.0	11
158	A re-evaluation of the Kumta Suture in western peninsular India and its extension into Madagascar. Journal of Asian Earth Sciences, 2018, 157, 317-328.	1.0	11
159	Carboniferous fault reactivation at the northern margin of the metal-rich Gawler Craton (South) Tj ETQq1 1 0.784 103193.	1314 rgBT 1.1	Overlock 10 11
160	The U-Pb age, geochemistry and tectonic significance of granitoids in the Soursat Complex, Northwest Iran. Turkish Journal of Earth Sciences, 0, , .	0.4	11
161	Stratigraphy of deformed Permian carbonate reefs in Saraburi Province, Thailand. Journal of the Geological Society, 2018, 175, 163-175.	0.9	10
162	Age and provenance of the Chaung Magyi Group, Yeywa Dome, Myanmar, based on U-Pb dating of detrital zircons. Journal of Asian Earth Sciences, 2019, 184, 103967.	1.0	10

#	Article	IF	CITATIONS
163	Sequence stratigraphy of the ca. 1730 Ma Wollogorang Formation, McArthur Basin, Australia. Marine and Petroleum Geology, 2020, 116, 104297.	1.5	10
164	Constraints from in-situ Rb-Sr dating on the timing of tectono-thermal events in the Umm Farwah shear zone and associated Cu-Au mineralisation in the Southern Arabian Shield, Saudi Arabia. Journal of Asian Earth Sciences, 2022, 224, 105037.	1.0	10
165	The East African Orogen: New Zircon and Nd Ages and Implications for Rodinia and Gondwana Supercontinent Formation and Dispersal. Gondwana Research, 2001, 4, 179-181.	3.0	9
166	A coupled micro- and macrostructural approach to the analysis of fluid induced brecciation, Curnamona Province, South Australia. Journal of Structural Geology, 2006, 28, 745-761.	1.0	9
167	Geology, geochemistry, and geochronology of the Cuihongshan Feâ€polymetallic deposit, Heilongjiang Province, NE China. Geological Journal, 2019, 54, 1254-1278.	0.6	9
168	Age, origin and palaeogeography of the Southern Irumide Belt, Zambia. Journal of the Geological Society, 2019, 176, 505-516.	0.9	9
169	Age and hafnium isotope evolution of Sudanese Butana and Chad illuminates the Stenian to Ediacaran evolution of the south and east Sahara. Precambrian Research, 2021, 362, 106323.	1.2	9
170	Protolith heterogeneity as a factor controlling the feedback between deformation, metamorphism and melting in a granulite-hosted gold deposit. Journal of the Geological Society, 2010, 167, 1089-1104.	0.9	8
171	Assembling two easy pieces: the geology of western Gondwana and plate tectonic theory - An introduction to the special volume. Gondwana Research, 2012, 21, 311-315.	3.0	8
172	Late syn- to post-collisional magmatism in Madagascar: The genesis of the Ambalavao and Maevarano Suites. Geoscience Frontiers, 2019, 10, 2063-2084.	4.3	8
173	Tectonic controls on sedimentary provenance and basin geography of the Mesoproterozoic Wilton package, McArthur Basin, northern Australia. Geological Magazine, 2022, 159, 179-198.	0.9	8
174	Constraining the timing of shale detachment faulting: A geochemical approach. Lithosphere, 2017, 9, 431-440.	0.6	6
175	Data analysis of the U–Pb geochronology and Lu–Hf system in zircon and whole-rock Sr, Sm–Nd and Pb isotopic systems for the granitoids of Thailand. Data in Brief, 2018, 21, 1794-1809.	0.5	6
176	The thermo-tectonic evolution of the southern Congo Craton margin as determined from apatite and muscovite thermochronology. Tectonophysics, 2019, 766, 398-415.	0.9	6
177	Proterozoic Basin Evolution and Tectonic Geography of Madagascar: Implications for an East Africa Connection During the Paleoproterozoic. Tectonics, 2021, 40, e2020TC006498.	1.3	6
178	Inherited structure as a control on late Paleozoic and Mesozoic exhumation of the Tarbagatai Mountains, southeastern Kazakhstan. Journal of the Geological Society, 2021, 178, .	0.9	6
179	Discussion on geochemical and isotopic constraints on subduction polarity, magma sources and palaeogeography of the Kohistan Arc, northern Pakistan. Journal of the Geological Society, 1998, 155, 893-895.	0.9	5
180	N and C Isotope Variations Along an Extreme Eutrophication and Salinity Gradient in the Coorong Lagoon, South Australia. Frontiers in Earth Science, 2022, 9, .	0.8	5

#	Article	IF	CITATIONS
181	Early Evolution of the Adelaide Superbasin. Geosciences (Switzerland), 2022, 12, 154.	1.0	5
182	Descending into the "snowball― High resolution sedimentological and geochemical analysis across the Tonian to Cryogenian boundary in South Australia. Precambrian Research, 2021, 367, 106449.	1.2	5
183	Has the East African Orogen Played Any Role in the Formation and Breakup of the Supercontinent Rodinia and the Amalgamation of Gondwana? New Evidence from Field Relationship and Isotopic Data. Gondwana Research, 2001, 4, 669-671.	3.0	4
184	Biochronology of Jurassic and Early Cretaceous radiolarites from the Lycian Mélange (SW Turkey) and implications for the evolution of the Northern Neotethyan ocean. Geological Society Special Publication, 2006, 260, 229-236.	0.8	4
185	Age and geochemistry of the Boucaut Volcanics in the Neoproterozoic Adelaide Rift Complex, South Australia. Australian Journal of Earth Sciences, 2021, 68, 580-589.	0.4	4
186	Footprints of the Alice Springs Orogeny preserved in far northern Australia: an application of multi-kinetic thermochronology in the Pine Creek Orogen and Arnhem Province. Journal of the Geological Society, 2021, 178, jgs2020-173.	0.9	4
187	lsotope Constraints on Intra-Basin Correlation and Depositional Settings of the Mid-Proterozoic Carbonates and Organic-Rich Shales in the Greater McArthur Basin, Northern Territory, Australia. ASEG Extended Abstracts, 2018, 2018, 1-6.	0.1	3
188	A geochemical investigation into the resource potential of the Lawn Hill Platform, northern Australia. APPEA Journal, 2020, 60, 722.	0.4	3
189	The Mozambique Ocean Suture in Southern India: Age and Significance of Granulites in the Palghat-Cauvery Shear Zone System. ASEG Extended Abstracts, 2006, 2006, 1-3.	0.1	2
190	Mineralogical Evidence for Regional Metamorphism Overprinted by Contact Metamorphism. Acta Geologica Sinica, 2012, 86, 48-64.	0.8	2
191	Biogeochemical status of the Paleo-Pacific Ocean: clues from the early Cambrian of South Australia. Australian Journal of Earth Sciences, 2021, 68, 968-991.	0.4	2
192	Tectonic evolution of an Early Cryogenian late- magmatic basin in central Madagascar. Journal of African Earth Sciences, 2021, 179, 104205.	0.9	2
193	The Arabian–Nubian Shield Within the Neoproterozoic Plate Tectonic Circuit. Regional Geology Reviews, 2021, , 195-202.	1.2	2
194	Reply to comment on "Dextral transpression and late-Eocene magmatism in the trans-Himalayan Ladakh Batholith (North India): implications for tectono-magmatic evolution of the Indo-Eurasian collisional arc― International Journal of Earth Sciences, 2013, 102, 973-975.	0.9	1
195	Reply to comment on "Interplay of deformation and magmatism in the Pangong Transpressional Zone, Eastern Ladakh, India: Implications for remobilization of the trans-Himalayan magmatic arc and initiation of the Karakoram Fault― Journal of Structural Geology, 2014, 65, 120-122.	1.0	1
196	Deformation recorded in polyhalite from evaporite detachments revealed by ⁴⁰ Ar â^• ³⁹ Ar da Geochronology, 2021, 3, 545-559.	tingo	1
197	Supercontinent dynamics: India and Gondwana, 8th International Symposium on Gondwana to Asia. Journal of the Geological Society of India, 2012, 79, 110-111.	0.5	Ο
198	International association for Gondwana Research Annual Convention and 9th international symposium on Gondwana to Asia–Adelaide 2012. Gondwana Research, 2012, 21, 307.	3.0	0

#	Article	IF	CITATIONS
199	International Association for Gondwana Research (IAGR) 2012 Annual Convention and 9th International Symposium on Gondwana to Asia. Gondwana Research, 2013, 23, 1659-1663.	3.0	0
200	Combining finite strain analysis and illite crystallinity to examine strain variation in a shale detachment zone. Journal of Asian Earth Sciences, 2019, 174, 283-293.	1.0	0
201	Continental Construction in Central Asia (IGCP-592): Scientific Results and Meetings in 2012. Episodes, 2013, 36, 227-234.	0.8	0
202	Thermochronological history of the northern Olympic Domain of the Gawler Craton; correlations between cooling ages and mineralising systems. ASEG Extended Abstracts, 2018, 2018, 1-4.	0.1	0
203	DETRITAL ZIRCON AGE AND PROVENANCE OF THE TONIAN-CRYOGENIAN OF THE ADELAIDE SUPERBASIN. , 2020, , .		0
204	DETRITAL ZIRCON PROVENANCE RECORD OF BASIN TECTONIC GEOGRAPHY: IMPLICATIONS FROM THE MESOPROTEROZOIC WILTON PACKAGE, GREATER MCARTHUR BASIN, NORTHERN AUSTRALIA. , 2020, , .		0
205	Chromium isotopes as a proxy for redox conditions on early Earth: Insights from Australian sedimentary rock records. , 2021, , .		0
206	IN-SITU RB-SR DATING AND ELEMENTAL FINGERPRINTING OF SHALES AND DOLERITE BY LA-ICP-MS/MS. , 2020, , .		0
207	DESCENDING INTO THE "SNOWBALL†IMPROVING INTERPRETATIONS OF TONIAN AND CRYOGENIAN PALAEOENVIRONMENTS WITH DETAILED SEDIMENTOLOGY AND GEOCHEMISTRY. , 2020, , .		0
208	Ca and Sr isotope constraints on the origin of the late Cambrian SPICE excursion: Insights from the sedimentary record of the Amadeus Basin, Central Australia. , 2021, , .		0