Jeffrey Moore

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/402752/publications.pdf

Version: 2024-02-01

495 papers 54,885 citations

906 116 h-index 217 g-index

524 all docs 524 docs citations

times ranked

524

34027 citing authors

#	Article	IF	CITATIONS
1	Anisotropic Foams via Frontal Polymerization. Advanced Materials, 2022, 34, e2105821.	21.0	19
2	Production of Organizational Chiral Structures by Design. Journal of the American Chemical Society, 2022, 144, 824-831.	13.7	6
3	Ultrasound controlled mechanophore activation in hydrogels for cancer therapy. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	27
4	Trioxazolo[2 ³]metacyclophane: synthesis, structural analysis, and optical properties. Acta Crystallographica Section C, Structural Chemistry, 2022, 78, 81-87.	0.5	0
5	Mechanically Triggered Carbon Monoxide Release with Turn-On Aggregation-Induced Emission. Journal of the American Chemical Society, 2022, 144, 1125-1129.	13.7	59
6	Efficient Intermolecular Charge Transport in π-Stacked Pyridinium Dimers Using Cucurbit[8]uril Supramolecular Complexes. Journal of the American Chemical Society, 2022, 144, 3162-3173.	13.7	24
7	Mesolytic cleavage of homobenzylic ethers for programmable end-of-life function in redoxmers. Journal of Materials Chemistry A, 2022, 10, 7739-7753.	10.3	6
8	Machine learning for polymeric materials: an introduction. Polymer International, 2022, 71, 537-542.	3.1	35
9	Using automated synthesis to understand the role of side chains on molecular charge transport. Nature Communications, 2022, 13, 2102.	12.8	12
10	Photoredox-Initiated Frontal Ring-Opening Metathesis Polymerization. ACS Macro Letters, 2022, 11, 780-784.	4.8	12
11	Mitigation of SARS-CoV-2 transmission at a large public university. Nature Communications, 2022, 13, .	12.8	21
12	Storable, Dual-Component Systems for Frontal Ring-Opening Metathesis Polymerization. Macromolecules, 2022, 55, 5459-5473.	4.8	8
13	Tandem Imine Formation and Alkyne Metathesis Enabled by Catalyst Choice. Journal of Organic Chemistry, 2022, 87, 8429-8436.	3.2	2
14	Unzipping polymers significantly enhance energy flux of aluminized composites. Combustion and Flame, 2022, 244, 112242.	5.2	6
15	Modeling Clinical Empathy in Narrative Essays. , 2021, , .		1
16	Ribosome-mediated incorporation of fluorescent amino acids into peptides <i>in vitro</i> . Chemical Communications, 2021, 57, 2661-2664.	4.1	12
17	Spontaneous Patterning during Frontal Polymerization. ACS Central Science, 2021, 7, 603-612.	11.3	33
18	Fast, reversible mechanochromism of regioisomeric oxazine mechanophores: Developing in situ responsive force probes for polymeric materials. CheM, 2021, 7, 1080-1091.	11.7	81

#	Article	IF	Citations
19	Rapid synchronized fabrication of vascularized thermosets and composites. Nature Communications, 2021, 12, 2836.	12.8	30
20	Selective Ring-Opening Allene Metathesis: Polymerization or Ruthenium Vinylidene Formation. ACS Macro Letters, 2021, 10, 642-648.	4.8	8
21	Survey of Catalysts for Frontal Ring-Opening Metathesis Polymerization. Macromolecules, 2021, 54, 5117-5123.	4.8	22
22	Flyby reaction trajectories: Chemical dynamics under extrinsic force. Science, 2021, 373, 208-212.	12.6	33
23	Manipulating Frontal Polymerization and Instabilities with Phase-Changing Microparticles. Journal of Physical Chemistry B, 2021, 125, 7537-7545.	2.6	11
24	Transition between Nonresonant and Resonant Charge Transport in Molecular Junctions. Nano Letters, 2021, 21, 8340-8347.	9.1	12
25	Reversible Switching of Molecular Conductance in Viologens is Controlled by the Electrochemical Environment. Journal of Physical Chemistry C, 2021, 125, 21862-21872.	3.1	14
26	Polymerâ^'Peptide Conjugates Convert Amyloid into Protein Nanobundles through Fragmentation and Lateral Association. ACS Applied Nano Materials, 2020, 3, 937-945.	5.0	11
27	Quantifying Error Correction through a Rule-Based Model of Strand Escape from an [<i>n</i>]-Rung Ladder. Journal of the American Chemical Society, 2020, 142, 162-168.	13.7	10
28	Frontal polymerization of unidirectional carbon-fiber-reinforced composites. Composites Part A: Applied Science and Manufacturing, 2020, 130, 105689.	7.6	45
29	Photoexcitation of Grubbs' Second-Generation Catalyst Initiates Frontal Ring-Opening Metathesis Polymerization. ACS Macro Letters, 2020, 9, 1563-1568.	4.8	25
30	Kinetic and Thermodynamic Control in Dynamic Covalent Synthesis. Trends in Chemistry, 2020, 2, 1043-1051.	8.5	18
31	Fluorescence-Enabled Self-Reporting for Redox Flow Batteries. ACS Energy Letters, 2020, 5, 3062-3068.	17.4	9
32	Ribosome-mediated polymerization of longÂchainÂcarbon and cyclic amino acids into peptides in vitro. Nature Communications, 2020, 11, 4304.	12.8	56
33	Quantum Chemistry-Informed Active Learning to Accelerate the Design and Discovery of Sustainable Energy Storage Materials. Chemistry of Materials, 2020, 32, 6338-6346.	6.7	50
34	Localization of Spiropyran Activation. Langmuir, 2020, 36, 5847-5854.	3.5	7
35	Polymer with Competing Depolymerization Pathways: Chain Unzipping versus Chain Scission. ACS Macro Letters, 2020, 9, 855-859.	4.8	8
36	Covalent Ag–C Bonding Contacts from Unprotected Terminal Acetylenes for Molecular Junctions. Nano Letters, 2020, 20, 5490-5495.	9.1	25

#	Article	IF	CITATIONS
37	Energy storage emerging: A perspective from the Joint Center for Energy Storage Research. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12550-12557.	7.1	218
38	Realistic Ion Dynamics through Charge Renormalization in Nonaqueous Electrolytes. Journal of Physical Chemistry B, 2020, 124, 3214-3220.	2.6	15
39	Kinetic Control in the Synthesis of a Möbius Tris((ethynyl)[5]helicene) Macrocycle Using Alkyne Metathesis. Journal of the American Chemical Society, 2020, 142, 6493-6498.	13.7	54
40	Charge Transport in Sequence-Defined Conjugated Oligomers. Journal of the American Chemical Society, 2020, 142, 4852-4861.	13.7	28
41	Triggered Transience of Plastic Materials by a Single Electron Transfer Mechanism. ACS Central Science, 2020, 6, 266-273.	11.3	25
42	Characterizing intermolecular interactions in redox-active pyridinium-based molecular junctions. Journal of Electroanalytical Chemistry, 2020, 875, 114070.	3.8	13
43	Cross-Linking Agents for Enhanced Performance of Thermosets Prepared via Frontal Ring-Opening Metathesis Polymerization. Macromolecules, 2020, 53, 8360-8366.	4.8	36
44	Rapid Synthesis of Elastomers and Thermosets with Tunable Thermomechanical Properties. ACS Macro Letters, 2020, 9, 819-824.	4.8	45
45	Architecture-Controlled Ring-Opening Polymerization for Dynamic Covalent Poly(disulfide)s. Journal of the American Chemical Society, 2019, 141, 17075-17080.	13.7	131
46	Expanding the limits of the second genetic code with ribozymes. Nature Communications, 2019, 10, 5097.	12.8	83
47	Functionalized and Degradable Polyphthalaldehyde Derivatives. Journal of the American Chemical Society, 2019, 141, 14544-14548.	13.7	37
48	Charge Transport and Quantum Interference Effects in Oxazole-Terminated Conjugated Oligomers. Journal of the American Chemical Society, 2019, 141, 16079-16084.	13.7	31
49	Multivalent Polymer–Peptide Conjugates: A General Platform for Inhibiting Amyloid Beta Peptide Aggregation. ACS Macro Letters, 2019, 8, 1365-1371.	4.8	13
50	Sterile particle-induced inflammation is mediated by macrophages releasing IL-33 through a Bruton's tyrosine kinase-dependent pathway. Nature Materials, 2019, 18, 289-297.	27.5	39
51	Multicolor Mechanochromism of a Polymer/Silica Composite with Dual Distinct Mechanophores. Journal of the American Chemical Society, 2019, 141, 1898-1902.	13.7	105
52	Modulating Noncovalent Cross-links with Molecular Switches. Journal of the American Chemical Society, 2019, 141, 3597-3604.	13.7	28
53	Frontal Ring-Opening Metathesis Copolymerization: Deviation of Front Velocity from Mixing Rules. ACS Macro Letters, 2019, 8, 846-851.	4.8	24
54	A tetrahedral molecular cage with a responsive vertex. Chemical Science, 2019, 10, 7043-7048.	7.4	15

#	Article	IF	Citations
55	Observation of Microheterogeneity in Highly Concentrated Nonaqueous Electrolyte Solutions. Journal of the American Chemical Society, 2019, 141, 8041-8046.	13.7	10
56	High-intensity focused ultrasound-induced mechanochemical transduction in synthetic elastomers. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10214-10222.	7.1	57
57	Effect of Polymerized Ionic Liquid Structure and Morphology on Shockwave Energy Dissipation. ACS Macro Letters, 2019, 8, 535-539.	4.8	12
58	Correlation of Immune Markers With Outcomes in Biliary Atresia Following Intravenous Immunoglobulin Therapy. Hepatology Communications, 2019, 3, 685-696.	4.3	18
59	Spatially Selective and Density-Controlled Activation of Interfacial Mechanophores. Journal of the American Chemical Society, 2019, 141, 4080-4085.	13.7	48
60	Molecular Sciences Made Personal: Developing Curiosity in General and Organic Chemistry with a Multi-Semester Utility Value Intervention. ACS Symposium Series, 2019, , 105-118.	0.5	2
61	A Phase I/IIa Trial of Intravenous Immunoglobulin Following Portoenterostomy in Biliary Atresia. Journal of Pediatric Gastroenterology and Nutrition, 2019, 68, 495-501.	1.8	25
62	Intrachain Charge Transport through Conjugated Donor–Acceptor Oligomers. ACS Applied Electronic Materials, 2019, 1, 7-12.	4.3	25
63	Frontal polymerization accelerated by continuous conductive elements. Journal of Applied Polymer Science, 2019, 136, 47418.	2.6	25
64	Fully Recyclable Metastable Polymers and Composites. Chemistry of Materials, 2019, 31, 398-406.	6.7	53
65	Processing-dependent mechanical properties of solvent cast cyclic polyphthalaldehyde. Polymer, 2019, 162, 29-34.	3.8	7
66	A Robust Oil-in-Oil Emulsion for the Nonaqueous Encapsulation of Hydrophilic Payloads. Journal of the American Chemical Society, 2018, 140, 3619-3625.	13.7	42
67	Product Distribution from Precursor Bite Angle Variation in Multitopic Alkyne Metathesis: Evidence for a Putative Kinetic Bottleneck. Journal of the American Chemical Society, 2018, 140, 5825-5833.	13.7	34
68	Effect of the Backbone Tether on the Electrochemical Properties of Soluble Cyclopropenium Redox-Active Polymers. Macromolecules, 2018, 51, 3539-3546.	4.8	43
69	Frontal Polymerization of Dicyclopentadiene: A Numerical Study. Journal of Physical Chemistry B, 2018, 122, 4583-4591.	2.6	50
70	Cyclic Poly(phthalaldehyde): Thermoforming a Bulk Transient Material. ACS Macro Letters, 2018, 7, 47-52.	4.8	41
71	Electrostatically Driven Guest Binding in a Self-Assembled Porous Network at the Liquid/Solid Interface. Langmuir, 2018, 34, 6036-6045.	3.5	8
72	Interfacial Mechanophore Activation Using Laser-Induced Stress Waves. Journal of the American Chemical Society, 2018, 140, 5000-5003.	13.7	36

#	Article	IF	CITATIONS
73	Size control of cross-linked carboxy-functionalized polystyrene particles: Four orders of magnitude of dimensional versatility. European Polymer Journal, 2018, 101, 202-210.	5.4	13
74	Programmable Payload Release from Transient Polymer Microcapsules Triggered by a Specific Ion Coactivation Effect. Journal of the American Chemical Society, 2018, 140, 94-97.	13.7	28
75	Colloidal Metal–Organic Framework Hexapods Prepared from Postsynthesis Etching with Enhanced Catalytic Activity and Rollable Packing. ACS Applied Materials & Interfaces, 2018, 10, 40990-40995.	8.0	20
76	Autonomous Damage Detection in Multilayered Coatings via Integrated Aggregation-Induced Emission Luminogens. ACS Applied Materials & Samp; Interfaces, 2018, 10, 40361-40365.	8.0	33
77	Mechanical Reactivity of Two Different Spiropyran Mechanophores in Polydimethylsiloxane. Macromolecules, 2018, 51, 9177-9183.	4.8	110
78	Designing Redox-Active Oligomers for Crossover-Free, Nonaqueous Redox-Flow Batteries with High Volumetric Energy Density. Chemistry of Materials, 2018, 30, 3861-3866.	6.7	59
79	Dynamic Remodeling of Covalent Networks via Ring-Opening Metathesis Polymerization. ACS Macro Letters, 2018, 7, 933-937.	4.8	54
80	Impact of Charge Transport Dynamics and Conditioning on Cycling Efficiency within Single Redox Active Colloids. ChemElectroChem, 2018, 5, 3006-3013.	3.4	18
81	Pediatric Pulmonary Artery Rehabilitation: A Review of Our Experience and a Novel Approach Using Bronchial Blockers. Pediatric Cardiology, 2018, 39, 1236-1241.	1.3	3
82	Accelerated Thermal Depolymerization of Cyclic Polyphthalaldehyde with a Polymeric Thermoacid Generator. Macromolecular Rapid Communications, 2018, 39, e1800046.	3.9	11
83	Rapid energy-efficient manufacturing of polymers and composites via frontal polymerization. Nature, 2018, 557, 223-227.	27.8	312
84	Solid–Liquid Lithium Electrolyte Nanocomposites Derived from Porous Molecular Cages. Journal of the American Chemical Society, 2018, 140, 7504-7509.	13.7	41
85	The ultrastructure of escape organs: setose arms and cross-striated muscles in Hexarthra mira (Rotifera: Gnesiotrocha: Flosculariaceae). Zoomorphology, 2017, 136, 159-173.	0.8	4
86	Macromolecular Design Strategies for Preventing Activeâ€Material Crossover in Nonâ€Aqueous Allâ€Organic Redoxâ€Flow Batteries. Angewandte Chemie - International Edition, 2017, 56, 1595-1599.	13.8	116
87	Impact of Shape Persistence on the Porosity of Molecular Cages. Journal of the American Chemical Society, 2017, 139, 3259-3264.	13.7	40
88	Macromolecular Design Strategies for Preventing Activeâ€Material Crossover in Nonâ€Aqueous Allâ€Organic Redoxâ€Flow Batteries. Angewandte Chemie, 2017, 129, 1617-1621.	2.0	25
89	Ultrafast Proton Transfer in Polymer Blends Triggered by Shock Waves. Journal of the American Chemical Society, 2017, 139, 3974-3977.	13.7	13
90	Grubbsâ€inspired metathesis in the Moore group. Journal of Polymer Science Part A, 2017, 55, 2935-2948.	2.3	5

#	Article	IF	Citations
91	Effects of Cross-Linking Density on Interfacial Polymerization and Scaffold Formation in Functionalized Polymer Beads. Industrial & Engineering Chemistry Research, 2017, 56, 4883-4886.	3.7	9
92	Concentration-Dependent Dimerization of Anthraquinone Disulfonic Acid and Its Impact on Charge Storage. Chemistry of Materials, 2017, 29, 4801-4810.	6.7	101
93	Alkyl Phosphite Inhibitors for Frontal Ring-Opening Metathesis Polymerization Greatly Increase Pot Life. ACS Macro Letters, 2017, 6, 609-612.	4.8	79
94	Low-Ceiling-Temperature Polymer Microcapsules with Hydrophobic Payloads via Rapid Emulsion-Solvent Evaporation. ACS Applied Materials & Emulsion-Solvent Evaporation. ACS Applied Materials & Emulsion-Solvent Evaporation.	8.0	28
95	Polymer–Peptide Conjugates Disassemble Amyloid β Fibrils in a Molecular-Weight Dependent Manner. Journal of the American Chemical Society, 2017, 139, 4298-4301.	13.7	74
96	A programmable soft chemo-mechanical actuator exploiting a catalyzed photochemical water-oxidation reaction. Soft Matter, 2017, 13, 7312-7317.	2.7	18
97	Redox Active Polymers for Non-Aqueous Redox Flow Batteries: Validation of the Size-Exclusion Approach. Journal of the Electrochemical Society, 2017, 164, A1688-A1694.	2.9	93
98	Hexagonal Molecular Tiling by Hexagonal Macrocycles at the Liquid/Solid Interface: Structural Effects on Packing Geometry. Langmuir, 2017, 33, 12453-12462.	3.5	21
99	Synthesis and structures of 11,11,12,12-tetracyano-2,6-diiodo-9,10-anthraquinodimethane and its 2:1 cocrystals with anthracene, pyrene and tetrathiafulvalene. Acta Crystallographica Section C, Structural Chemistry, 2016, 72, 923-931.	0.5	2
100	Polymers with autonomous life-cycle control. Nature, 2016, 540, 363-370.	27.8	322
101	Dynamic Odd–Even Effect in Liquid <i>n</i> â€Alkanes near Their Melting Points. Angewandte Chemie, 2016, 128, 14296-14301.	2.0	3
102	Synthesis of Pyridine– and Pyrazine–BF ₃ Complexes and Their Characterization in Solution and Solid State. Journal of Physical Chemistry C, 2016, 120, 8461-8471.	3.1	21
103	Impact of electrolyte composition on the reactivity of a redox active polymer studied through surface interrogation and ion-sensitive scanning electrochemical microscopy. Analyst, The, 2016, 141, 3842-3850.	3.5	26
104	Scanning Electrochemical Microscopy and Hydrodynamic Voltammetry Investigation of Charge Transfer Mechanisms on Redox Active Polymers. Journal of the Electrochemical Society, 2016, 163, H3006-H3013.	2.9	37
105	Frontal Ring-Opening Metathesis Polymerization of Exo-Dicyclopentadiene for Low Catalyst Loadings. ACS Macro Letters, 2016, 5, 593-596.	4.8	64
106	Odd–Even Structural Sensitivity on Dynamics in Network-Forming Ionic Liquids. Chemistry of Materials, 2016, 28, 3227-3233.	6.7	14
107	Regioisomer-Specific Mechanochromism of Naphthopyran in Polymeric Materials. Journal of the American Chemical Society, 2016, 138, 12328-12331.	13.7	163
108	Redox Active Polymers as Soluble Nanomaterials for Energy Storage. Accounts of Chemical Research, 2016, 49, 2649-2657.	15.6	115

#	Article	IF	Citations
109	Impact of Backbone Tether Length and Structure on the Electrochemical Performance of Viologen Redox Active Polymers. Chemistry of Materials, 2016, 28, 7362-7374.	6.7	60
110	Dynamic Odd–Even Effect in Liquid <i>n</i> àâ€Alkanes near Their Melting Points. Angewandte Chemie - International Edition, 2016, 55, 14090-14095.	13.8	41
111	Crystal Structure, Thermal Properties, and Shock-Wave-Induced Nucleation of 1,2-Bis(phenylethynyl)benzene. Crystal Growth and Design, 2016, 16, 6148-6151.	3.0	5
112	Synthesis of Cycloparaphenyleneacetylene via Alkyne Metathesis: C ₇₀ Complexation and Copper-Free Triple Click Reaction. Journal of the American Chemical Society, 2016, 138, 13814-13817.	13.7	71
113	A Robust Damage-Reporting Strategy for Polymeric Materials Enabled by Aggregation-Induced Emission. ACS Central Science, 2016, 2, 598-603.	11.3	113
114	Redox Active Colloids as Discrete Energy Storage Carriers. Journal of the American Chemical Society, 2016, 138, 13230-13237.	13.7	111
115	Pressure-Induced Neutral-to-Ionic Transition in an Amorphous Organic Material. Chemistry of Materials, 2016, 28, 6446-6449.	6.7	4
116	Polymerization Initiated by Particle Contact: A Quiescent State Trigger for Materials Synthesis. Journal of the American Chemical Society, 2016, 138, 12336-12339.	13.7	5
117	Distinguishing Pseudomeningocele, Epidural Hematoma, and Postoperative Infection on Postoperative MRI. Clinical Spine Surgery, 2016, 29, E471-E474.	1.3	23
118	Arrhythmias After Stage I Hybrid Palliation in Single-Ventricle Patients. Pediatric Cardiology, 2016, 37, 1416-1421.	1.3	6
119	The lightest organic radical cation for charge storage in redox flow batteries. Scientific Reports, 2016, 6, 32102.	3.3	59
120	Base-Triggered Degradation of Poly(vinyl ester sulfone)s with Tunable Sensitivity. ACS Macro Letters, 2016, 5, 1257-1260.	4.8	22
121	Highâ€Performance Mesostructured Organic Hybrid Pseudocapacitor Electrodes. Advanced Functional Materials, 2016, 26, 903-910.	14.9	63
122	Effect of Polymer Grafting Density on Mechanophore Activation at Heterointerfaces. ACS Macro Letters, 2016, 5, 819-822.	4.8	31
123	Cardiomyopathy Linked Mutations in Alpha Tropomyosin Influence Blocked State Stability but not Myosin Strong Binding. Biophysical Journal, 2016, 110, 124a-125a.	0.5	0
124	Crystal structures of three complexes of zinc chloride with tri-tert-butylphosphane. Acta Crystallographica Section E: Crystallographic Communications, 2016, 72, 35-39.	0.5	4
125	Mechanogeneration of Acid from Oxime Sulfonates. Journal of the American Chemical Society, 2016, 138, 2540-2543.	13.7	47
126	Superoxide (Electro)Chemistry on Well-Defined Surfaces in Organic Environments. Journal of Physical Chemistry C, 2016, 120, 15909-15914.	3.1	25

#	Article	IF	Citations
127	Kinetically Trapped Tetrahedral Cages via Alkyne Metathesis. Journal of the American Chemical Society, 2016, 138, 2182-2185.	13.7	146
128	Is Molecular Weight or Degree of Polymerization a Better Descriptor of Ultrasound-Induced Mechanochemical Transduction?. ACS Macro Letters, 2016, 5, 177-180.	4.8	108
129	Transient Electronics: Thermally Triggered Degradation of Transient Electronic Devices (Adv. Mater.) Tj $$ ETQq $$ 1 $$	0.784314 21.0	rgBT /Overlo
130	Depolymerizable polymers: preparation, applications, and future outlook. MRS Communications, 2015, 5, 191-204.	1.8	56
131	Rapid 3D Extrusion of Synthetic Tumor Microenvironments. Advanced Materials, 2015, 27, 5512-5517.	21.0	124
132	Thermally Triggered Degradation of Transient Electronic Devices. Advanced Materials, 2015, 27, 3783-3788.	21.0	153
133	Biomimetic Selfâ€Healing. Angewandte Chemie - International Edition, 2015, 54, 10428-10447.	13.8	370
134	Molecular Design for Dual Modulation Effect of Amyloid Protein Aggregation. Journal of the American Chemical Society, 2015, 137, 8062-8068.	13.7	31
135	Synthesis and reactivity of anthracenyl-substituted arenediynes. Tetrahedron Letters, 2015, 56, 3155-3159.	1.4	5
136	Shock-Induced Ordering in a Nano-segregated Network-Forming Ionic Liquid. Journal of the American Chemical Society, 2015, 137, 16000-16003.	13.7	12
137	A Retro-Staudinger Cycloaddition: Mechanochemical Cycloelimination of a \hat{l}^2 -Lactam Mechanophore. Journal of the American Chemical Society, 2015, 137, 10946-10949.	13.7	61
138	An Analysis of 2 Fusion Methods for the Treatment of Osteomyelitis Following Fractures About the Ankle. Foot and Ankle International, 2015, 36, 547-555.	2.3	12
139	Biopolymers: Multidimensional Vascularized Polymers using Degradable Sacrificial Templates (Adv.) Tj ETQq1 1 (0.784314 14.9	rgBT /Overloc
140	Polymer Mechanochemistry: From Destructive to Productive. Accounts of Chemical Research, 2015, 48, 2181-2190.	15.6	506
141	Tunable Thermal Degradation of Poly(vinyl butyl carbonate sulfone)s via Side-Chain Branching. ACS Macro Letters, 2015, 4, 665-668.	4.8	49
142	pH-Dependent Switchable Permeability from Core–Shell Microcapsules. ACS Macro Letters, 2015, 4, 441-445.	4.8	11
143	New Frontiers for Encapsulation in the Chemical Industry. ACS Applied Materials & Encapsulation in the Chemical Industry. ACS	8.0	62
144	Oligomer-Coated Carbon Nanotube Chemiresistive Sensors for Selective Detection of Nitroaromatic Explosives. ACS Applied Materials & Samp; Interfaces, 2015, 7, 7471-7475.	8.0	53

#	Article	IF	CITATIONS
145	Trigger Chemistries for Better Industrial Formulations. ACS Applied Materials & Eamp; Interfaces, 2015, 7, 6369-6382.	8.0	58
146	Water as a Promoter and Catalyst for Dioxygen Electrochemistry in Aqueous and Organic Media. ACS Catalysis, 2015, 5, 6600-6607.	11.2	98
147	Improved TTF functionalization of polymers for two-dimensional charge-transfer networks. Polymer Chemistry, 2015, 6, 8325-8330.	3.9	4
148	Evolutionary Design of Low Molecular Weight Organic Anolyte Materials for Applications in Nonaqueous Redox Flow Batteries. Journal of the American Chemical Society, 2015, 137, 14465-14472.	13.7	191
149	BF ₃ -promoted electrochemical properties of quinoxaline in propylene carbonate. RSC Advances, 2015, 5, 18822-18831.	3.6	36
150	Multidimensional Vascularized Polymers using Degradable Sacrificial Templates. Advanced Functional Materials, 2015, 25, 1043-1052.	14.9	55
151	Photodoping and Enhanced Visible Light Absorption in Singleâ€Walled Carbon Nanotubes Functionalized with a Wide Band Gap Oligomer. Advanced Materials, 2015, 27, 162-167.	21.0	20
152	Crystal structure of 9,10-bis(1,3-dithiol-2-ylidene)-9,10-dihydroanthracene. Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, 1475-1479.	0.5	2
153	Crystal structure of 1,3-bis(2,3-dimethylquinoxalin-6-yl)benzene. Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, 1429-1432.	0.5	0
154	Use of Corticosteroids After Hepatoportoenterostomy for Bile Drainage in Infants With Biliary Atresia. JAMA - Journal of the American Medical Association, 2014, 311, 1750.	7.4	153
155	Pickering-Emulsion-Templated Encapsulation of a Hydrophilic Amine and Its Enhanced Stability Using Poly(allyl amine). ACS Macro Letters, 2014, 3, 976-980.	4.8	44
156	Carbon Black: Microencapsulated Carbon Black Suspensions for Restoration of Electrical Conductivity (Adv. Funct. Mater. 20/2014). Advanced Functional Materials, 2014, 24, 2922-2922.	14.9	0
157	The mechanochemical production of phenyl cations through heterolytic bond scission. Faraday Discussions, 2014, 170, 385-394.	3.2	29
158	Metastatic lesions in the musculoskeletal system from hepatocellular carcinoma. Current Orthopaedic Practice, 2014, 25, 488-492.	0.2	0
159	Thermally Stable Autonomic Healing in Epoxy using a Dualâ€Microcapsule System. Advanced Materials, 2014, 26, 282-287.	21.0	183
160	Homochiral Self-Sorting of BINOL Macrocycles. Chemical Science, 2014, 5, 81-85.	7.4	69
161	Shockwave Loading of Mechanochemically Active Polymer Coatings. ACS Applied Materials & Samp; Interfaces, 2014, 6, 5350-5355.	8.0	71
162	A selfâ€healing biomaterial based on freeâ€radical polymerization. Journal of Biomedical Materials Research - Part A, 2014, 102, 3024-3032.	4.0	30

#	Article	IF	Citations
163	Continuous Selfâ€Healing Life Cycle in Vascularized Structural Composites. Advanced Materials, 2014, 26, 4302-4308.	21.0	209
164	Restoration of Large Damage Volumes in Polymers. Science, 2014, 344, 620-623.	12.6	230
165	Divergent Macrocyclization Mechanisms in the Cationic Initiated Polymerization of Ethyl Glyoxylate. Macromolecules, 2014, 47, 3603-3607.	4.8	20
166	Rapid Stiffening of a Microfluidic Endoskeleton via Frontal Polymerization. ACS Applied Materials & Eamp; Interfaces, 2014, 6, 18469-18474.	8.0	26
167	Triggered Transience of Metastable Poly(phthalaldehyde) for Transient Electronics. Advanced Materials, 2014, 26, 7637-7642.	21.0	173
168	Mechanophore Activation at Heterointerfaces. Journal of the American Chemical Society, 2014, 136, 15925-15928.	13.7	99
169	Depolymerizable, adaptive supramolecular polymer nanoparticles and networks. Polymer Chemistry, 2014, 5, 3788-3794.	3.9	56
170	Alkyne mechanochemistry: putative activation by transoidal bending. Chemical Communications, 2014, 50, 13235-13238.	4.1	20
171	Impact of Redox-Active Polymer Molecular Weight on the Electrochemical Properties and Transport Across Porous Separators in Nonaqueous Solvents. Journal of the American Chemical Society, 2014, 136, 16309-16316.	13.7	172
172	Copolymerization of <i>o</i> -Phthalaldehyde and Ethyl Glyoxylate: Cyclic Macromolecules with Alternating Sequence and Tunable Thermal Properties. Macromolecules, 2014, 47, 5509-5513.	4.8	29
173	Odd–Even Glass Transition Temperatures in Network-Forming Ionic Glass Homologue. Journal of the American Chemical Society, 2014, 136, 1268-1271.	13.7	25
174	Multivalent Macromolecules Redirect Nucleation-Dependent Fibrillar Assembly into Discrete Nanostructures. Journal of the American Chemical Society, 2014, 136, 5233-5236.	13.7	46
175	Intramolecular energy transfer in a synthetic dendron-based light harvesting system. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 295, 26-33.	3.9	2
176	Fracture-induced activation in mechanophore-linked, rubber toughened PMMA. Polymer, 2014, 55, 4164-4171.	3.8	84
177	Relaxing Conformational Constraints in Dynamic Macrocycle Synthesis. Macromolecules, 2014, 47, 3829-3836.	4.8	19
178	Solvent Swelling Activation of a Mechanophore in a Polymer Network. Macromolecules, 2014, 47, 2690-2694.	4.8	96
179	The Effect of Polymer Chain Alignment and Relaxation on Forceâ€Induced Chemical Reactions in an Elastomer. Advanced Functional Materials, 2014, 24, 1529-1537.	14.9	88
180	Microencapsulated Carbon Black Suspensions for Restoration of Electrical Conductivity. Advanced Functional Materials, 2014, 24, 2947-2956.	14.9	41

#	Article	IF	Citations
181	Mechanically triggered heterolytic unzipping of a low-ceiling-temperature polymer. Nature Chemistry, 2014, 6, 623-628.	13.6	198
182	Toward a Molecular Understanding of Energetics in Li–S Batteries Using Nonaqueous Electrolytes: A High-Level Quantum Chemical Study. Journal of Physical Chemistry C, 2014, 118, 11545-11558.	3.1	154
183	Force Spectrum Microscopy Reveals Active Diffusive-Like Fluctuations in Living Cells. Biophysical Journal, 2014, 106, 244a.	0.5	0
184	Subaquatic Reaming During Arthrodesis of the First Metatarsophalangeal Joint to Prevent Thermal Necrosis of Bone. Orthopedics, 2014, 37, 389-391.	1.1	5
185	Peer tutoring with the aid of the Internet. British Journal of Educational Technology, 2013, 44, 144-155.	6.3	28
186	Syntheses and Properties of Graphyne Fragments: Trigonally Expanded Dehydrobenzo[12]annulenes. Chemistry - A European Journal, 2013, 19, 11251-11260.	3.3	66
187	The Effect of Regulatory Light Chain Phosphorylation on Myosin Bearing Familial Hypertrophic Cardiomyopathy-Linked Mutations. Biophysical Journal, 2013, 104, 157a.	0.5	0
188	Extrahepatic Anomalies in Infants With Biliary Atresia: Results of a Large Prospective North American Multicenter Study. Hepatology, 2013, 58, 1724-1731.	7.3	134
189	Dynamic Covalent Macrocyclic Poly(phthalaldehyde)s: Scrambling Cyclic Homopolymer Mixtures Produces Multi-Block and Random Cyclic Copolymers. Macromolecules, 2013, 46, 8121-8128.	4.8	34
190	Development and Performance Characterization of a Polyamide Nanofiltration Membrane Modified with Covalently Bonded Aramide Dendrimers. Environmental Science & Environmental Science & 2013, 47, 130711065921008.	10.0	8
191	α-Substituent Effect on <i>o</i> -Vinylbenzaldehyde Cyclopolymerization. ACS Macro Letters, 2013, 2, 935-938.	4.8	6
192	UV patternable thin film chemistry for shape and functionally versatile self-oscillating gels. Soft Matter, 2013, 9, 1231-1243.	2.7	52
193	Polymer mechanochemistry: techniques to generate molecular force via elongational flows. Chemical Society Reviews, 2013, 42, 7497.	38.1	266
194	Exploiting Force Sensitive Spiropyrans as Molecular Level Probes. Macromolecules, 2013, 46, 3746-3752.	4.8	123
195	Functional Phthalaldehyde Polymers by Copolymerization with Substituted Benzaldehydes. Macromolecules, 2013, 46, 608-612.	4.8	49
196	Time-Dependent Mechanochemical Response of SP-Cross-Linked PMMA. Macromolecules, 2013, 46, 8917-8921.	4.8	61
197	One-Step Surface Doping of Organic Nanofibers to Achieve High Dark Conductivity and Chemiresistor Sensing of Amines. ACS Applied Materials & Sensing Officeron Achieve High Dark Conductivity and Chemiresistor Sensing of Amines. ACS Applied Materials & Sensing Officeron Achieve High Dark Conductivity and Chemiresistor Sensing Officeron Achieve High Dark Conductivity Achieve High Dark C	8.0	28
198	End Group Characterization of Poly(phthalaldehyde): Surprising Discovery of a Reversible, Cationic Macrocyclization Mechanism. Journal of the American Chemical Society, 2013, 135, 12755-12761.	13.7	117

#	Article	IF	Citations
199	Nanofiltration Membranes with Modified Active Layer Using Aromatic Polyamide Dendrimers. Advanced Functional Materials, 2013, 23, 598-607.	14.9	56
200	Autonomic restoration of electrical conductivity using polymer-stabilized carbon nanotube and graphene microcapsules. Applied Physics Letters, 2012, 101, 043106.	3.3	51
201	Temperature-Controlled, Reversible, Nanofiber Assembly from an Amphiphilic Macrocycle. ACS Macro Letters, 2012, 1, 1335-1338.	4.8	34
202	Macrocyclic depolymerization of arylene-ethynylene copolymers: a dynamic combinatorial method. Chemical Communications, 2012, 48, 4426.	4.1	21
203	Diffusion-Controlled Detection of Trinitrotoluene: Interior Nanoporous Structure and Low Highest Occupied Molecular Orbital Level of Building Blocks Enhance Selectivity and Sensitivity. Journal of the American Chemical Society, 2012, 134, 4978-4982.	13.7	137
204	Directional Cyclooligomers via Alkyne Metathesis. Journal of the American Chemical Society, 2012, 134, 9114-9117.	13.7	27
205	Chemical Treatment of Poly(lactic acid) Fibers to Enhance the Rate of Thermal Depolymerization. ACS Applied Materials & Depolymerization.	8.0	55
206	Role of Mechanophore Orientation in Mechanochemical Reactions. ACS Macro Letters, 2012, 1, 163-166.	4.8	102
207	Enhancing the Performance of Nanofiltration Membranes by Modifying the Active Layer with Aramide Dendrimers. Environmental Science & Environmental Sci	10.0	29
208	Arylene–ethynylene macrocycles: Privileged shape-persistent building blocks for organic materials. Pure and Applied Chemistry, 2012, 84, 869-878.	1.9	36
209	Regulatory Light Chain Phosphorylation Mimic S15D Causes Partial Rescue of Isometric Force Production in FHC Causing Mutation D166V. Biophysical Journal, 2012, 102, 557a.	0.5	0
210	A Selfâ€healing Conductive Ink. Advanced Materials, 2012, 24, 2578-2581.	21.0	143
211	Proton-Coupled Mechanochemical Transduction: A Mechanogenerated Acid. Journal of the American Chemical Society, 2012, 134, 12446-12449.	13.7	194
212	Autonomic Shutdown of Lithiumâ€ion Batteries Using Thermoresponsive Microspheres. Advanced Energy Materials, 2012, 2, 583-590.	19.5	158
213	Self-healing thermoset using encapsulated epoxy-amine healing chemistry. Polymer, 2012, 53, 581-587.	3.8	308
214	Autonomic Restoration of Electrical Conductivity. Advanced Materials, 2012, 24, 398-401.	21.0	287
215	Selfâ€Healing Circuits: Autonomic Restoration of Electrical Conductivity (Adv. Mater. 3/2012). Advanced Materials, 2012, 24, 397-397.	21.0	2
216	Environmental effects on mechanochemical activation of spiropyran in linear PMMA. Journal of Materials Chemistry, 2011, 21, 8443.	6.7	129

#	Article	IF	Citations
217	Covalent ladder formation becomes kinetically trapped beyond four rungs. Chemical Communications, 2011, 47, 5028.	4.1	26
218	Characterizing the mechanochemically active domains in gem-dihalocyclopropanated polybutadiene under compression and tension. Journal of Materials Chemistry, 2011, 21, 8454.	6.7	81
219	Adhesion Promotion via Noncovalent Interactions in Self-Healing Polymers. ACS Applied Materials & Lamp; Interfaces, 2011, 3, 3072-3077.	8.0	38
220	Arylene–Ethynylene Macrocycles via Depolymerization–Macrocyclization. Macromolecules, 2011, 44, 3685-3687.	4.8	41
221	A Collaborative, Wiki-Based Organic Chemistry Project Incorporating Free Chemistry Software on the Web. Journal of Chemical Education, 2011, 88, 764-768.	2.3	29
222	Monitoring the Real-Time Binding of Tropomyosin to Actin using Total Internal Reflection Fluorescence Microscopy. Biophysical Journal, 2011, 100, 302a.	0.5	0
223	Foldamer Structuring by Covalently Bound Macromolecules. Journal of the American Chemical Society, 2011, 133, 19650-19652.	13.7	20
224	Shear activation of mechanophore-crosslinked polymers. Journal of Materials Chemistry, 2011, 21, 8381.	6.7	162
225	Engineering Solid-State Morphologies in Carbazole–Ethynylene Macrocycles. Journal of the American Chemical Society, 2011, 133, 14063-14070.	13.7	68
226	The Anatomic Pattern of Biliary Atresia Identified at Time of Kasai Hepatoportoenterostomy and Early Postoperative Clearance of Jaundice Are Significant Predictors of Transplant-Free Survival. Annals of Surgery, 2011, 254, 577-585.	4.2	147
227	Spot-on healing. Nature, 2011, 472, 299-300.	27.8	34
228	Visual Indication of Mechanical Damage Using Core–Shell Microcapsules. ACS Applied Materials & Interfaces, 2011, 3, 4547-4551.	8.0	57
229	Structure–Mechanochemical Activity Relationships for Cyclobutane Mechanophores. Journal of the American Chemical Society, 2011, 133, 18992-18998.	13.7	170
230	Triggered Release from Polymer Capsules. Macromolecules, 2011, 44, 5539-5553.	4.8	534
231	Programmable Chemical Gradient Patterns by Soft Grayscale Lithography. Small, 2011, 7, 3350-3362.	10.0	9
232	Threeâ€Dimensional Microvascular Fiberâ€Reinforced Composites. Advanced Materials, 2011, 23, 3654-3658.	21.0	203
233	Hybrid Materials: Three-Dimensional Microvascular Fiber-Reinforced Composites (Adv. Mater. 32/2011). Advanced Materials, 2011, 23, 3653-3653.	21.0	1
234	Thermoresponsive Microcapsules for Autonomic Lithium-ion Battery Shutdown. Conference Proceedings of the Society for Experimental Mechanics, 2011, , 17-23.	0.5	3

#	Article	IF	Citations
235	Self-healing Polymers and Composites. American Scientist, 2011, 99, 392.	0.1	50
236	Restoration of Conductivity with TTFâ€TCNQ Chargeâ€Transfer Salts. Advanced Functional Materials, 2010, 20, 1721-1727.	14.9	127
237	Conjugated Carbon Monolayer Membranes: Methods for Synthesis and Integration. Advanced Materials, 2010, 22, 1072-1077.	21.0	50
238	Functional Nanostructured Plasmonic Materials. Advanced Materials, 2010, 22, 1102-1110.	21.0	109
239	Intrastrand foldamer crosslinking by reductive amination. Journal of Polymer Science Part A, 2010, 48, 927-935.	2.3	12
240	Evaluation of peroxide initiators for radical polymerizationâ€based selfâ€healing applications. Journal of Polymer Science Part A, 2010, 48, 2698-2708.	2.3	61
241	Triggered Microcapsule Depolymerization. Synfacts, 2010, 2010, 1133-1133.	0.0	0
242	Force-Induced Redistribution of a Chemical Equilibrium. Journal of the American Chemical Society, 2010, 132, 16107-16111.	13.7	234
243	Mechanical Reconfiguration of Stereoisomers. Journal of the American Chemical Society, 2010, 132, 3256-3257.	13.7	72
244	Synthesis of Hyperbranched Poly(<i>m</i> -phenylene)s via Suzuki Polycondensation of a Branched AB ₂ Monomer. Macromolecules, 2010, 43, 9277-9282.	4.8	38
245	Proximity field nanopatterning of azopolymer thin films. Nanotechnology, 2010, 21, 165301.	2.6	15
246	Reversible Dispersion and Release of Carbon Nanotubes Using Foldable Oligomers. Journal of the American Chemical Society, 2010, 132, 14113-14117.	13.7	98
247	Covalent Grafting of <i>m</i> -Phenylene-Ethynylene Oligomers to Oxide Surfaces. Chemistry of Materials, 2010, 22, 5319-5327.	6.7	2
248	Robust, Double-Walled Microcapsules for Self-Healing Polymeric Materials. ACS Applied Materials & Amp; Interfaces, 2010, 2, 1195-1199.	8.0	202
249	Programmable Microcapsules from Self-Immolative Polymers. Journal of the American Chemical Society, 2010, 132, 10266-10268.	13.7	192
250	Microencapsulation of a Reactive Liquid-Phase Amine for Self-Healing Epoxy Composites. Macromolecules, 2010, 43, 1855-1859.	4.8	155
251	Masked Cyanoacrylates Unveiled by Mechanical Force. Journal of the American Chemical Society, 2010, 132, 4558-4559.	13.7	149
252	1-Bromomethyl-4-aza-1-azoniabicyclo[2.2.2]octane bromide. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o377-o377.	0.2	1

#	Article	IF	CITATIONS
253	Force-induced activation of covalent bonds in mechanoresponsive polymeric materials. Nature, 2009, 459, 68-72.	27.8	1,446
254	Chemistry goes global in the virtual world. Nature Chemistry, 2009, 1, 2-4.	13.6	11
255	Semi-fused hexaphenyl hexa-peri-hexabenzocoronene: a novel fluorophore from an intramolecular Scholl reaction. Tetrahedron Letters, 2009, 50, 4071-4077.	1.4	20
256	Zinc Chloride-Promoted Aryl Bromideâ^'Alkyne Cross-Coupling Reactions at Room Temperature. Journal of Organic Chemistry, 2009, 74, 8897-8900.	3.2	79
257	Cationic Comb Polymer Superdispersants for Colloidal Silica Suspensions. Langmuir, 2009, 25, 6787-6792.	3.5	28
258	Using the Cambridge Structural Database To Teach Molecular Geometry Concepts in Organic Chemistry. Journal of Chemical Education, 2009, 86, 460.	2.3	6
259	Mechanically-Induced Chemical Changes in Polymeric Materials. Chemical Reviews, 2009, 109, 5755-5798.	47.7	1,130
260	Microcapsules containing suspensions of carbon nanotubes. Journal of Materials Chemistry, 2009, 19, 6093.	6.7	98
261	Multiphoton Writing of Three-Dimensional Fluidic Channels within a Porous Matrix. Journal of the American Chemical Society, 2009, 131, 11294-11295.	13.7	28
262	Expedient fabrication of well-defined nanofibres from a macrocycle molecule: Solution-controlled self-assembly. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 2009, 223, 139-147.	0.1	1
263	Highly responsive fluorescent sensing of explosives taggant with an organic nanofibril film. Sensors and Actuators B: Chemical, 2008, 134, 287-291.	7.8	50
264	3-D analysis of semiconductor dopant distributions in a patterned structure using LEAP. Ultramicroscopy, 2008, 108, 536-539.	1.9	18
265	Reactive Sieving with Foldamers: Inspiration from Nature and Directions for the Future. Chemistry - A European Journal, 2008, 14, 2650-2657.	3.3	101
266	Autonomic Healing of Epoxy Vinyl Esters via Ring Opening Metathesis Polymerization. Advanced Functional Materials, 2008, 18, 44-52.	14.9	150
267	Full Recovery of Fracture Toughness Using a Nontoxic Solventâ€Based Selfâ€Healing System. Advanced Functional Materials, 2008, 18, 1898-1904.	14.9	241
268	Preparation of enediyne-crosslinked networks and their reactivity under thermal and mechanical conditions. Tetrahedron, 2008, 64, 8435-8448.	1.9	30
269	Molecular Design of Thin Film Optoelectronic Materials for Solar Cells. Journal of the American Chemical Society, 2008, 130, 12201-12203.	13.7	18
270	One-Dimensional Self-Assembly of Planar π-Conjugated Molecules: Adaptable Building Blocks for Organic Nanodevices. Accounts of Chemical Research, 2008, 41, 1596-1608.	15.6	1,136

#	Article	IF	CITATIONS
271	Evaluation of Ruthenium Catalysts for Ring-Opening Metathesis Polymerization-Based Self-Healing Applications. Chemistry of Materials, 2008, 20, 3288-3297.	6.7	134
272	A new self-healing epoxy with tungsten (VI) chloride catalyst. Journal of the Royal Society Interface, 2008, 5, 95-103.	3.4	141
273	Solvent-Free Synthesis of Janus Colloidal Particles. Langmuir, 2008, 24, 10073-10077.	3.5	120
274	Iterative Synthesis of 1,3,5-Polyphenylene Dendrons via Câ^'H Activation. Organic Letters, 2008, 10, 4851-4854.	4.6	37
275	Sequence dependence of methylation rate enhancement in meta-phenyleneethynylene foldamers. Chemical Communications, 2008, , 1011.	4.1	20
276	Synthetic Applications with Use of a Silica-Supported Alkyne Metathesis Catalyst. Journal of Organic Chemistry, 2008, 73, 4256-4258.	3.2	35
277	Synchronized Self-Assembly. Science, 2008, 320, 620-621.	12.6	50
278	Synthesis of linked carbon monolayers: Films, balloons, tubes, and pleated sheets. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7353-7358.	7.1	57
279	Autonomic Healing of Polymers. MRS Bulletin, 2008, 33, 766-769.	3.5	64
280	Silica-Supported Alkyne Metathesis Catalyst: Synthetic Application. Synfacts, 2008, 2008, 1007-1007.	0.0	0
281	Self Healing Polymers and Composites. Springer Series in Materials Science, 2007, , 19-44.	0.6	18
282	Mechanophore-Linked Addition Polymers. Journal of the American Chemical Society, 2007, 129, 13808-13809.	13.7	350
283	Foldamers as Reactive Sieves:Â Reactivity as a Probe of Conformational Flexibility. Journal of the American Chemical Society, 2007, 129, 5444-5450.	13.7	74
284	"Click―Modification of Silica Surfaces and Glass Microfluidic Channels. Analytical Chemistry, 2007, 79, 1661-1667.	6.5	140
285	Nanofiltration Membranes Based on Rigid Star Amphiphiles. Chemistry of Materials, 2007, 19, 3194-3204.	6.7	64
286	Solvent-Promoted Self-Healing Epoxy Materials. Macromolecules, 2007, 40, 8830-8832.	4.8	265
287	Programmed Dynamic Covalent Assembly of Unsymmetrical Macrocycles. Journal of the American Chemical Society, 2007, 129, 11682-11683.	13.7	67
288	Detection of Explosives with a Fluorescent Nanofibril Film. Journal of the American Chemical Society, 2007, 129, 6978-6979.	13.7	377

#	Article	IF	CITATIONS
289	Solution-Phase Structure of an Artificial Foldamer:Â X-ray Scattering Study. Journal of the American Chemical Society, 2007, 129, 4114-4115.	13.7	20
290	Covalent Assembly of Molecular Ladders. Journal of the American Chemical Society, 2007, 129, 4512-4513.	13.7	79
291	Performance Characterization of Nanofiltration Membranes Based on Rigid Star Amphiphiles. Environmental Science & Environmenta	10.0	24
292	Optical Transduction of Chemical Forces. Nano Letters, 2007, 7, 733-737.	9.1	50
293	Light-Induced Shape Changes in Azobenzene Functionalized Polymers Prepared by Ring-Opening Metathesis Polymerization. Macromolecules, 2007, 40, 1838-1842.	4.8	55
294	Self-healing kinetics and the stereoisomers of dicyclopentadiene. Journal of the Royal Society Interface, 2007, 4, 389-393.	3.4	108
295	Life extension of self-healing polymers with rapidly growing fatigue cracks. Journal of the Royal Society Interface, 2007, 4, 395-403.	3.4	161
296	Self-healing materials with microvascularÂnetworks. Nature Materials, 2007, 6, 581-585.	27. 5	1,379
297	Biasing reaction pathways with mechanical force. Nature, 2007, 446, 423-427.	27.8	722
298	PNIPAM Chain Collapse Depends on the Molecular Weight and Grafting Density. Langmuir, 2006, 22, 4259-4266.	3.5	372
299	Synthesis and Aggregation Behavior of Thermally Responsive Star Polymers. Langmuir, 2006, 22, 6352-6360.	3.5	53
300	Catalyst Morphology and Dissolution Kinetics of Self-Healing Polymers. Chemistry of Materials, 2006, 18, 1312-1317.	6.7	199
301	A Mo(VI) Alkylidyne Complex with Polyhedral Oligomeric Silsesquioxane Ligands:Â Homogeneous Analogue of a Silica-Supported Alkyne Metathesis Catalyst. Journal of the American Chemical Society, 2006, 128, 14742-14743.	13.7	82
302	Cooperative Self-Assembly of Oligo(m-phenyleneethynylenes) into Supramolecular Coordination Polymers. Macromolecules, 2006, 39, 7269-7276.	4.8	56
303	Nanofibril Self-Assembly of an Arylene Ethynylene Macrocycle. Journal of the American Chemical Society, 2006, 128, 6576-6577.	13.7	179
304	Solid-Phase Synthesis of m-Phenylene Ethynylene Heterosequence Oligomers. Journal of Organic Chemistry, 2006, 71, 5282-5290.	3.2	51
305	The Chain-Length Dependence Test. Accounts of Chemical Research, 2006, 39, 11-20.	15.6	173
306	Water-Vapor Plasma-Based Surface Activation for Trichlorosilane Modification of PMMA. Langmuir, 2006, 22, 4104-4109.	3.5	73

#	Article	IF	CITATIONS
307	A Highly Active, Heterogeneous Catalyst for Alkyne Metathesis. Angewandte Chemie - International Edition, 2006, 45, 585-588.	13.8	73
308	Shape-Persistent Macrocycles: Structures and Synthetic Approaches from Arylene and Ethynylene Building Blocks. Angewandte Chemie - International Edition, 2006, 45, 4416-4439.	13.8	513
309	Wax-Protected Catalyst Microspheres for Efficient Self-Healing Materials. Advanced Materials, 2005, 17, 205-208.	21.0	364
310	(3-lodophenyl)[2-(3-iodophenylimino)-1-methylpropylidene]amine. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, o3767-o3768.	0.2	0
311	N,N-Dicyclohexyl-2-iodoacetamide. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, o3769-o3770.	0.2	0
312	N,N′-Bis(3-iodophenyl)ethylenediimine. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, o3773-o3774.	0.2	1
313	{1-Methyl-2-[3-(trimethylsilylethynyl)phenylimino]propylidene}[3-(trimethylsilylethynyl)phenyl]amine. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, o3771-o3772.	0.2	0
314	Reaction Pathways Leading to Arylene Ethynylene Macrocycles via Alkyne Metathesis. Journal of the American Chemical Society, 2005, 127, 11863-11870.	13.7	123
315	Ultrasound-Induced Site-Specific Cleavage of Azo-Functionalized Poly(ethylene glycol). Macromolecules, 2005, 38, 8975-8978.	4.8	245
316	Sequence-Specific Binding ofm-Phenylene Ethynylene Foldamers to a Piperazinium Dihydrochloride Salt. Organic Letters, 2005, 7, 1683-1686.	4.6	42
317	Supramolecular Chelation Based on Folding. Journal of the American Chemical Society, 2005, 127, 5928-5935.	13.7	63
318	A High-Yield, One-Step Synthesis ofo-Phenylene Ethynylene Cyclic Trimer via Precipitation-Driven Alkyne Metathesis. Journal of Organic Chemistry, 2005, 70, 10198-10201.	3.2	66
319	Chymotrypsin Responsive Hydrogel:Â Application of a Disulfide Exchange Protocol for the Preparation of Methacrylamide Containing Peptides. Biomacromolecules, 2005, 6, 632-637.	5.4	133
320	Polymerizations Initiated by Diradicals from Cycloaromatization Reactions. Macromolecules, 2005, 38, 7266-7273.	4.8	25
321	Light-Regulated Electrostatic Interactions in Colloidal Suspensions. Journal of the American Chemical Society, 2005, 127, 14574-14575.	13.7	49
322	Introduction to Photolithography: Preparation of Microscale Polymer Silhouettes. Journal of Chemical Education, 2005, 82, 1365.	2.3	33
323	A novel indicator series for measuring pKa values in acetonitrile. Tetrahedron, 2004, 60, 7287-7292.	1.9	8
324	Synthesis of Poly(2,5-thienyleneethynylene)s by Alkyne Metathesis. Macromolecules, 2004, 37, 3973-3975.	4.8	55

#	Article	IF	Citations
325	Enhanced Methylation Rate within a Foldable Molecular Receptor. Journal of Organic Chemistry, 2004, 69, 9234-9237.	3.2	30
326	A Water-Solublem-Phenylene Ethynylene Foldamer. Organic Letters, 2004, 6, 469-472.	4.6	104
327	Folding-Promoted Methylation of a Helical DMAP Analogue. Journal of the American Chemical Society, 2004, 126, 1648-1649.	13.7	61
328	Patterned Dual pH-Responsive Coreâ^'Shell Hydrogels with Controllable Swelling Kinetics and Volumes. Langmuir, 2004, 20, 6535-6537.	3.5	49
329	Single-Site Modifications and Their Effect on the Folding Stability ofm-Phenylene Ethynylene Oligomers. Organic Letters, 2004, 6, 889-892.	4.6	38
330	Pyridine-Containingm-Phenylene Ethynylene Oligomers Having Tunable Basicities. Organic Letters, 2004, 6, 659-662.	4.6	31
331	Multitechnique Characterization of Fatty Acid-Modified Microgels. Langmuir, 2004, 20, 1111-1119.	3.5	7
332	Helix stabilization through pyridinium–π interactions. Chemical Communications, 2004, , 1480-1481.	4.1	31
333	Arylene Ethynylene Macrocycles Prepared by Precipitation-Driven Alkyne Metathesis. Journal of the American Chemical Society, 2004, 126, 12796-12796.	13.7	161
334	A Helicene-Containing Foldamer Displaying Highly Solvent-Dependent CD Spectra. Organic Letters, 2004, 6, 3317-3320.	4.6	54
335	Highly Active Trialkoxymolybdenum(VI) Alkylidyne Catalysts Synthesized by a Reductive Recycle Strategy. Journal of the American Chemical Society, 2004, 126, 329-335.	13.7	149
336	Fatty acid-modified microgels: transmission electron microscopy study. Surface and Interface Analysis, 2003, 35, 1065-1068.	1.8	0
337	Nucleationâ^'Elongation Polymerization under Imbalanced Stoichiometry. Journal of the American Chemical Society, 2003, 125, 16294-16299.	13.7	66
338	Reviews of Books:Nature Cures: The History of Alternative Medicine in America James C. Whorton. American Historical Review, 2003, 108, 1137-1138.	0.0	0
339	Pressure-Sensitive Microfluidic Gates Fabricated by Patterning Surface Free Energies Inside Microchannelsâ€. Langmuir, 2003, 19, 1873-1879.	3. 5	38
340	m-Phenylene Ethynylene Sequences Joined by Imine Linkages:Â Dynamic Covalent Oligomers. Journal of Organic Chemistry, 2003, 68, 8397-8403.	3.2	33
341	Radical Polymerization Initiated by Bergman Cyclization. Journal of the American Chemical Society, 2003, 125, 12992-12993.	13.7	38
342	n-Alkyl Fatty Acid-Modified Microgels:Â Ion Permeation as a Function of Chain Length. Langmuir, 2003, 19, 910-915.	3.5	13

#	Article	IF	CITATIONS
343	Swelling Kinetics of Disulfide Cross-Linked Microgels. Macromolecules, 2003, 36, 3960-3966.	4.8	68
344	Surface-Modified Hydrogels for Chemoselective Bioconjugation. Macromolecules, 2003, 36, 8846-8852.	4.8	6
345	Nucleation–elongation: a mechanism for cooperative supramolecular polymerization. Organic and Biomolecular Chemistry, 2003, 1, 3471-3491.	2.8	421
346	Shape-persistent arylene ethynylene macrocycles: syntheses and supramolecular chemistry. Chemical Communications, 2003, , 807-818.	4.1	327
347	A reductive recycle strategy for the facile synthesis of molybdenum(VI) alkylidyne catalysts for alkyne metathesisElectronic supplementary information (ESI) available: spectral data. See http://www.rsc.org/suppdata/cc/b2/b212405j/. Chemical Communications, 2003, , 832-833.	4.1	108
348	Folding-Driven Reversible Polymerization of Oligo(m-phenylene ethynylene) Imines:  Solvent and Starter Sequence Studies. Macromolecules, 2003, 36, 2712-2720.	4.8	53
349	Mathematical Modeling and Simulation of Dissolvable Hydrogels. Journal of Aerospace Engineering, 2003, 16, 55-64.	1.4	24
350	Helicogenicity of solvents in the conformational equilibrium of oligo(m-phenylene ethynylene)s: Implications for foldamer research. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 5053-5057.	7.1	127
351	Role of End-Group Functionality on the Surface Segregation Properties of HBPs in Blends with Polystyrene:  Application of HBPs as Dewetting Inhibitors. Langmuir, 2002, 18, 9985-9989.	3.5	27
352	Reversible Polymerization Driven by Folding. Journal of the American Chemical Society, 2002, 124, 9996-9997.	13.7	88
353	Control and Applications of Immiscible Liquids in Microchannels. Journal of the American Chemical Society, 2002, 124, 5284-5285.	13.7	123
354	Principles of Surface-Directed Liquid Flow in Microfluidic Channels. Analytical Chemistry, 2002, 74, 4259-4268.	6.5	154
355	Roles of Molecular Architecture and End-Group Functionality on the Surface Properties of Branched Polymers. Langmuir, 2002, 18, 9990-9995.	3.5	20
356	Helical Pitch ofm-Phenylene Ethynylene Foldamers by Double Spin Labeling. Journal of the American Chemical Society, 2002, 124, 11836-11837.	13.7	88
357	Molecular Packing and Morphology of Oligo(m-phenylene ethynylene) Foldamers. Journal of the American Chemical Society, 2002, 124, 8605-8610.	13.7	42
358	Indirect Method for Determining Degree of Branching in Hyperbranched Polymers. Macromolecules, 2002, 35, 1599-1603.	4.8	24
359	ROMP Reactivity ofendo- andexo-Dicyclopentadiene. Macromolecules, 2002, 35, 7878-7882.	4.8	227
360	Synthesis and Self-Association of an Imine-Containingm-Phenylene Ethynylene Macrocycle. Journal of Organic Chemistry, 2002, 67, 3548-3554.	3.2	108

#	Article	IF	CITATIONS
361	Hydrogen Bond-Stabilized Helix Formation of am-Phenylene Ethynylene Oligomer. Organic Letters, 2002, 4, 4663-4666.	4.6	76
362	Synthesis and characterization of end-group modified hyperbranched polyetherimides. Journal of Polymer Science Part A, 2002, 40, 936-946.	2.3	35
363	The influence of alkyl end-groups on the miscibility of hyperbranched polymers with polyolefins. Polymer Engineering and Science, 2002, 42, 2393-2400.	3.1	6
364	Adsorption of cobalt phthalocyanine on $Si(100)2\tilde{A}-1$ and $Si(100)2\tilde{A}-1$:H surfaces studied by scanning tunneling microscopy and spectroscopy. Surface Science, 2002, 516, 118-126.	1.9	18
365	The Size-Selective Synthesis of Folded Oligomers by Dynamic Templation. Journal of the American Chemical Society, 2002, 124, 5934-5935.	13.7	125
366	Dissolvable and Asymmetric Hydrogels as Components for Microfluidic Systems. , 2002, , 712-714.		6
367	Surface Modification of Microgels with N-Alkyl Fatty Acid Layers: Ion Gradient Properties. , 2002, , 428-430.		1
368	Fast pH- and Ionic Strength-Responsive Hydrogels in Microchannels. Langmuir, 2001, 17, 4758-4763.	3.5	183
369	Surface-Directed Liquid Flow Inside Microchannels. Science, 2001, 291, 1023-1026.	12.6	723
370	Effect of branching on the rheological properties of solutions of aromatic etherimide copolymers. Journal of Rheology, 2001, 45, 1245-1258.	2.6	16
371	An organic self-regulating microfluidic system. Lab on A Chip, 2001, 1, 96.	6.0	81
372	Surfactant-Induced Lysis of Lipid-Modified Microgels. Journal of the American Chemical Society, 2001, 123, 12921-12922.	13.7	19
373	The Effect of Pressure on the Conformation of Two Sets of m-Phenylene Ethynylene Oligomers in PMMA and PtBMA. Journal of Physical Chemistry B, 2001, 105, 3300-3305.	2.6	7
374	Effect of Pressure on the Conformation of Two Oligo (m-Phenylene Ethynylene) Foldamers Containing a Piperazine or Terpene Derivative as Guest. Journal of Physical Chemistry B, 2001, 105, 12374-12377.	2.6	8
375	Self-Assembly of Foldedm-Phenylene Ethynylene Oligomers into Helical Columns. Journal of the American Chemical Society, 2001, 123, 7978-7984.	13.7	244
376	Effect of Linear Sequence Length on the Properties of Branched Aromatic Etherimide Copolymers. Macromolecules, 2001, 34, 2695-2701.	4.8	57
377	Effect of Pressure on the Emission Efficiencies of a Series of Phenylacetylene Dendrimers. Macromolecules, 2001, 34, 4606-4609.	4.8	9
378	Eliminating Variations in Elemental Composition in Studies on the Physical Properties of Linear to Hyperbranched Etherimide Copolymers. Macromolecules, 2001, 34, 8811-8813.	4.8	17

#	Article	IF	CITATIONS
379	Chain Length-Dependent Affinity of Helical Foldamers for a Rodlike Guest. Journal of the American Chemical Society, 2001, 123, 1792-1793.	13.7	203
380	Active control of electroosmotic flow in microchannels using light. Sensors and Actuators B: Chemical, 2001, 75, 223-229.	7.8	46
381	Effect of pressure on the luminescence of a series of methoxy phenylacetylene dendrimers neat and in dilute solution in solid poly(tert-butyl methacrylate). Journal of Polymer Science Part A, 2001, 39, 2859-2865.	2.3	4
382	Cooperativity in the Folding of Helicalm-Phenylene Ethynylene Oligomers Based upon the `Sergeants-and-Soldiers' Principle. Chemistry - A European Journal, 2001, 7, 4150-4154.	3.3	107
383	A Field Guide to Foldamers. Chemical Reviews, 2001, 101, 3893-4012.	47.7	2,167
384	Folding-driven synthesis of oligomers. Nature, 2001, 414, 889-893.	27.8	161
385	Autonomic healing of polymer composites. Nature, 2001, 409, 794-797.	27.8	3,747
386	Responsive biomimetic hydrogel valve for microfluidics. Applied Physics Letters, 2001, 78, 2589-2591.	3.3	234
387	Atomic-level study of the robustness of the Si(100)- $2\tilde{A}$ –1:H surface following exposure to ambient conditions. Applied Physics Letters, 2001, 78, 886-888.	3.3	45
388	Regulation of pH in a Microfluidic Stream. , 2001, , 486-488.		1
389	Studies of Temperature-Dependent Excimer-Monomer Conversion in Dendrimeric Antenna Supermolecules by Fluorescence Spectroscopy. Materials Research Society Symposia Proceedings, 2000, 651, 1.	0.1	0
390	Twist Sense Bias Induced by Chiral Side Chains in Helically Folded Oligomers. Angewandte Chemie - International Edition, 2000, 39, 228-230.	13.8	223
391	Synthesis and characterization of PEE-PEO diblock copolymers with complementary end-groups for hydrogen-bond heteroassociation. Journal of Polymer Science Part A, 2000, 38, 207-219.	2.3	15
392	Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature, 2000, 404, 588-590.	27.8	1,827
393	Microfluidic tectonics: A comprehensive construction platform for microfluidic systems. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 13488-13493.	7.1	342
394	Novel polymers: Molecular to nanoscale order in three dimensions. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 11147-11148.	7.1	14
395	Foldamer-Based Molecular Recognition. Journal of the American Chemical Society, 2000, 122, 2758-2762.	13.7	336
396	Correlated Excimer Formation and Molecular Rotational Dynamics in Phenylacetylene Dendrimersâ€. Journal of Physical Chemistry B, 2000, 104, 3988-3995.	2.6	60

#	Article	IF	Citations
397	Synthesis and Characterization of Monodendrons Based on 9-Phenylcarbazole. Journal of Organic Chemistry, 2000, 65, 116-123.	3.2	96
398	Solvophobically Driven π-Stacking of Phenylene Ethynylene Macrocycles and Oligomers. Journal of the American Chemical Society, 2000, 122, 11315-11319.	13.7	290
399	Synthesis and Characterization of 9-Phenylcarbazole Monodendrons:Â An Exploration of Peripheral Groups To Facilitate Purification. Macromolecules, 2000, 33, 801-807.	4.8	31
400	Transition from Exponential to Nonexponential Kinetics during Formation of a Nonbiological Helix. Journal of the American Chemical Society, 2000, 122, 3248-3249.	13.7	53
401	Controlled Synthesis of Hyperbranched Polymers by Slow Monomer Addition to a Core. Macromolecules, 2000, 33, 3212-3218.	4.8	145
402	"Masterpiece―Copolymer Sequences by Targeted Equilibrium-Shifting. Organic Letters, 2000, 2, 915-918.	4.6	53
403	Helical Twist Sense Bias in Oligo(phenylene ethynylene)s Induced by an Optically Active Flexible Tether. Organic Letters, 2000, 2, 135-138.	4.6	43
404	Synthesis and Characterization of Linearâ-'Dendritic Aromatic Etherimide Copolymers:Â Tuning Molecular Architecture To Optimize Properties and Processability. Macromolecules, 2000, 33, 5315-5317.	4.8	41
405	Conformational Ordering of Apolar, Chiralm-Phenylene Ethynylene Oligomers. Organic Letters, 2000, 2, 1525-1528.	4.6	65
406	Hexagonal Packing of Oligo(m-phenylene ethynylene)s in the Solid State:Â Helical Nanotubules. Journal of the American Chemical Society, 2000, 122, 6134-6135.	13.7	53
407	Synthesis and Characterization of Hyperbranched Aromatic Poly(ether imide)s with Varying Degrees of Branching. Macromolecules, 2000, 33, 6412-6415.	4.8	58
408	In-Channel Processing to Create Autonomous Hydrogel Microvalves. , 2000, , 45-48.		5
409	Rapid synthesis of etherimides via catalytic arylation of silylated phenols. Tetrahedron Letters, 1999, 40, 631-634.	1.4	6
410	Supramolecular polymers. Current Opinion in Colloid and Interface Science, 1999, 4, 108-116.	7.4	113
411	Controlling the Secondary Structure of Nonbiological Oligomers with Solvophobic and Coordination Interactions. Angewandte Chemie - International Edition, 1999, 38, 233-236.	13.8	148
412	Rapid Synthesis of Hyperbranched Aromatic Polyetherimides. Macromolecules, 1999, 32, 4764-4768.	4.8	76
413	Helical Bias in Solvophobically Folded Oligo(Phenylene Ethynylene)s. Journal of the American Chemical Society, 1999, 121, 2643-2644.	13.7	127
414	Structure of a Phenylacetylene Macrocycle at the Airâ "Water Interface. Langmuir, 1999, 15, 6897-6900.	3.5	15

#	Article	IF	Citations
415	Supramolecular Organization of Oligo(m-phenylene ethynylene)s in the Solid-State. Journal of the American Chemical Society, 1999, 121, 5933-5939.	13.7	53
416	Cooperative Conformational Transitions in Phenylene Ethynylene Oligomers:Â Chain-Length Dependence. Journal of the American Chemical Society, 1999, 121, 3114-3121.	13.7	341
417	Controlling the Secondary Structure of Nonbiological Oligomers with Solvophobic and Coordination Interactions., 1999, 38, 233.		1
418	High Resolution X-ray Diffraction Study of a Tubular Liquid Crystal. Advanced Materials, 1998, 10, 1363-1366.	21.0	90
419	Molecular Nano-Lenses: Directed Energy Migration and Back-Transfer in Dendrimeric Antenna Supermolecules. Molecular Crystals and Liquid Crystals, 1998, 314, 37-46.	0.3	1
420	Analysis of Amidinium Guest Complexation by Comparison of Two Classes of Dendrimer Hosts Containing a Hydrogen Bonding Unit at the Core. Journal of the American Chemical Society, 1998, 120, 2172-2173.	13.7	83
421	Photoinduced Electron Transfer in Dendritic Macromolecules. 1. Intermolecular Electron Transfer. Macromolecules, 1998, 31, 8091-8099.	4.8	37
422	Energy Transfer in Organic Dendrimer Antenna Funnel and Anti-Funnel Supermolecules. Materials Research Society Symposia Proceedings, 1998, 543, 311.	0.1	0
423	High Resolution X-ray Diffraction Study of a Tubular Liquid Crystal. , 1998, 10, 1363.		3
424	Spectroscopic Evidence for Excitonic Localization in Fractal Antenna Supermolecules. Physical Review Letters, 1997, 78, 1239-1242.	7.8	295
425	Nanopatterning organic monolayers on Si(100) by selective chemisorption of norbornadiene. Applied Physics Letters, 1997, 70, 2747-2749.	3.3	47
426	Synthesis and Characterization of Water-Soluble Dendritic Macromolecules with a Stiff, Hydrocarbon Interior. Macromolecules, 1997, 30, 6467-6482.	4.8	60
427	Solid-Supported Hyperbranched Polymerization:  Evidence for Self-Limited Growth. Journal of the American Chemical Society, 1997, 119, 3391-3392.	13.7	114
428	Coordination Networks of 3,3â€~-Dicyanodiphenylacetylene and Silver(I) Salts: Structural Diversity through Changes in Ligand Conformation and Counterion. Inorganic Chemistry, 1997, 36, 2960-2968.	4.0	269
429	Directed Energy Transfer Funnels in Dendrimeric Antenna Supermoleculesâ€. Journal of Physical Chemistry B, 1997, 101, 6318-6322.	2.6	279
430	Shape-Persistent Molecular Architectures of Nanoscale Dimension. Accounts of Chemical Research, 1997, 30, 402-413.	15.6	613
431	Solvophobically Driven Folding of Nonbiological Oligomers. Science, 1997, 277, 1793-1796.	12.6	803
432	Association of Dicyanodiphenylacetylenes with Silver(I) Salts in Solution and Solid State:Â Electrospray Ionization Mass Spectrometry Samples Aggregates at Subsaturated Concentrations. Journal of the American Chemical Society, 1997, 119, 10401-10412.	13.7	59

#	Article	IF	CITATIONS
433	A Coordination Geometry Table of the d-Block Elements and Their Ions. Journal of Chemical Education, 1997, 74, 915.	2.3	141
434	Polar domains on globular macromolecules: Shape-persistent, amphiphilic tridendrons. Tetrahedron, 1997, 53, 15331-15347.	1.9	26
435	Anomalous Shift in the Fluorescence Spectra of a High-Generation Dendrimer in Nonpolar Solvents. Angewandte Chemie International Edition in English, 1997, 36, 1633-1635.	4.4	65
436	Columnar Liquid Crystals from Shape-Persistent Dendritic Molecules. Angewandte Chemie International Edition in English, 1997, 36, 1636-1639.	4.4	114
437	A Packing Model for Interpenetrated Diamondoid Structures—an Interpretation Based on the Constructive Interference of Supramolecular Networks. Chemistry - A European Journal, 1997, 3, 765-771.	3.3	212
438	Assembly of Amphiphilic Phenylacetylene Macrocycles at the Airâ^'Water Interface and on Solid Surfaces. Journal of the American Chemical Society, 1996, 118, 9409-9414.	13.7	53
439	Coordination Networks Based on Multitopic Ligands and Silver(I) Salts:Â A Study of Network Connectivity and Topology as a Function of Counterion. Chemistry of Materials, 1996, 8, 2030-2040.	6.7	206
440	Energy Transfer in Dendritic Macromolecules:Â Molecular Size Effects and the Role of an Energy Gradient. Journal of the American Chemical Society, 1996, 118, 9635-9644.	13.7	666
441	Aromatic π-Stacking in Solution as Revealed through the Aggregation of Phenylacetylene Macrocycles. Journal of the American Chemical Society, 1996, 118, 1019-1027.	13.7	436
442	Molecular architecture and supramolecular chemistry. Current Opinion in Solid State and Materials Science, $1996, 1, 777-788$.	11.5	36
443	Dendrimer-Metalloporphyrins:Â Synthesis and Catalysis. Journal of the American Chemical Society, 1996, 118, 5708-5711.	13.7	393
444	Electroluminescent diodes from a single component emitting layer of dendritic macromolecules. Advanced Materials, 1996, 8, 237-241.	21.0	268
445	Ein zusammenklappbarer Makrotricyclus mit einem molekularen Hohlraum. Angewandte Chemie, 1996, 108, 320-322.	2.0	5
446	A Freely Hinged Macrotricycle with a Molecular Cavity. Angewandte Chemie International Edition in English, 1996, 35, 297-299.	4.4	34
447	Shape selective epoxidation of alkenes by metalloporphyrin-dendrimers. Journal of Molecular Catalysis A, 1996, 113, 109-116.	4.8	112
448	Solid-Phase Synthesis of Phenylacetylene Oligomers Utilizing a Novel 3-Propyl-3-(benzyl-supported) Triazene Linkage. Journal of Organic Chemistry, 1996, 61, 8160-8168.	3.2	111
449	Hollow organic solids. Nature, 1995, 374, 495-496.	27.8	12
450	Spontaneous assembly of a hinged coordination network. Nature, 1995, 374, 792-795.	27.8	842

#	Article	IF	Citations
451	Design and synthesis of molecular turnstiles Journal of the American Chemical Society, 1995, 117, 10662-10671.	13.7	313
452	Zeolite-like Behavior of a Coordination Network. Journal of the American Chemical Society, 1995, 117, 11600-11601.	13.7	339
453	Improvements in the Synthesis of Phenylacetylene Monodendrons Including a Solid-Phase Convergent Method. Macromolecules, 1995, 28, 5955-5963.	4.8	87
454	Double Exponential Dendrimer Growth. Journal of the American Chemical Society, 1995, 117, 2159-2165.	13.7	238
455	Geometrically-Controlled and Site-Specifically-Functionalized Phenylacetylene Macrocycles. Journal of the American Chemical Society, 1994, 116, 4227-4239.	13.7	193
456	lodine-promoted decomposition of 1-aryl-3,3-dialkyltriazenes: A mild method for the synthesis of aryl iodides. Tetrahedron Letters, 1994, 35, 5539-5542.	1.4	51
457	Crosslinking chemistry for high-performance polymer networks. Polymer, 1994, 35, 5012-5017.	3.8	27
458	Analysis of hydrocarbon dendrimers by laser desorption time-of-flight and fourier transform mass spectrometry. Journal of the American Society for Mass Spectrometry, 1994, 5, 731-739.	2.8	56
459	An organic solid with wide channels based on hydrogen bonding between macrocycles. Nature, 1994, 371, 591-593.	27.8	316
460	Reactivity of Disubstituted Benzocyclobutenes. Model Compounds of Cross-Linkable High-Performance Polymers. Macromolecules, 1994, 27, 2647-2657.	4.8	33
461	Nanoarchitectures. 6. Liquid Crystals Based on Shape-Persistent Macrocyclic Mesogens Journal of the American Chemical Society, 1994, 116, 2655-2656.	13.7	158
462	Phenylacetylene Dendrimers by the Divergent, Convergent, and Double-Stage Convergent Methods. Journal of the American Chemical Society, 1994, 116, 4537-4550.	13.7	238
463	Synthesis of Sequence Specific Phenylacetylene Oligomers on an Insoluble Solid Support. Journal of the American Chemical Society, 1994, 116, 10841-10842.	13.7	95
464	Structural Characterization of Ordered Phases in Hydrocarbon Dendrimers. Materials Research Society Symposia Proceedings, 1994, 351, 413.	0.1	0
465	Modular construction for the programmed assembly of molecular crystals and liquid crystals. Macromolecular Symposia, 1994, 77, 295-301.	0.7	6
466	Synthesis and Characterization of a High Molecular Weight Stiff Dendrimer. Angewandte Chemie International Edition in English, 1993, 32, 246-248.	4.4	110
467	Rapid Construction of Large-size Phenylacetylene Dendrimers up to 12.5 Nanometers in Molecular Diameter. Angewandte Chemie International Edition in English, 1993, 32, 1354-1357.	4.4	180
468	Odd solid predictions. Nature, 1993, 365, 690-690.	27.8	3

#	Article	IF	CITATIONS
469	Carborod molecular scaffolding. Nature, 1993, 361, 118-119.	27.8	3
470	A new polymerization reaction for the synthesis of aromatic polyketones. Macromolecules, 1993, 26, 2535-2541.	4.8	19
471	Cross-linkable copolymers of poly(p-phenyleneterephthalamide). Chemistry of Materials, 1993, 5, 248-250.	6.7	31
472	Processible poly(arylene ether ketones) that can be crosslinked to high-performance networks. Macromolecules, 1993, 26, 3713-3716.	4.8	43
473	Nanoarchitectures. 3. Aggregation of hexa(phenylacetylene) macrocycles in solution: a model system for studying .pipi. interactions. Journal of the American Chemical Society, 1992, 114, 9701-9702.	13.7	143
474	Synthesis of three-dimensional nanoscaffolding. Journal of the American Chemical Society, 1992, 114, 8730-8732.	13.7	93
475	Materials chemistry of chiral macromolecules. 1. Synthesis and phase transitions. Journal of the American Chemical Society, 1992, 114, 3429-3441.	13.7	22
476	Nanoarchitectures. 1. Controlled synthesis of phenylacetylene sequences. Journal of the American Chemical Society, 1992, 114, 2273-2274.	13.7	132
477	Efficient Synthesis of Nanoscale Macrocyclic Hydrocarbons. Angewandte Chemie International Edition in English, 1992, 31, 922-924.	4.4	104
478	Poly(aryl ketones) via palladium-catalyzed cross-coupling. Die Makromolekulare Chemie Rapid Communications, 1992, 13, 91-96.	1.1	29
479	Effiziente Synthese makrocyclischer Kohlenwasserstoffe mit Durchmessern im Nanometerbereich. Angewandte Chemie, 1992, 104, 873-874.	2.0	24
480	Synthesis of rigid dendritic macromolecules: enlarging the repeat unit size as a function of generation, permitting growth to continue. Macromolecules, 1991, 24, 5893-5894.	4.8	103
481	Soluble, chiral polyacetylenes: syntheses and investigation of their solution conformation. Journal of the American Chemical Society, 1991, 113, 1704-1712.	13.7	158
482	Molecular organization in nematic polymers. 2. Evolution of the mesophase. Macromolecules, 1991, 24, 6408-6412.	4.8	3
483	Molecular organization in nematic polymers. 1. Biphasic structures vs the nematic phase. Macromolecules, 1991, 24, 6399-6407.	4.8	6
484	A convenient masking group for aryl iodides. Tetrahedron Letters, 1991, 32, 2465-2466.	1.4	114
485	Cleavage of aldehyde hydrazonium iodides under mild conditions. A convenient route to chiral nitriles of high enantiomeric purity. Journal of Organic Chemistry, 1990, 55, 3374-3377.	3.2	23
486	Room temperature polyesterification. Macromolecules, 1990, 23, 65-70.	4.8	514

#	Article	IF	CITATIONS
487	Synthesis of a chemically ordered liquid-crystal polymer. Macromolecules, 1988, 21, 1217-1221.	4.8	42
488	Chemical disorder and phase separation: a study of two liquid-crystal polymers. Macromolecules, 1988, 21, 1228-1234.	4.8	48
489	Monte Carlo Simulation of Ion Implantation in Crystalline Silicon Using Marlowe. Journal of the Electrochemical Society, 1988, 135, 2034-2038.	2.9	16
490	Orientation dynamics of main-chain liquid crystal polymers. 1. Synthesis and characterization of the mesogen. Macromolecules, 1987, 20, 273-281.	4.8	46
491	Orientation dynamics of main-chain liquid crystal polymers. 2. Structure and kinetics in a magnetic field. Macromolecules, 1987, 20, 282-293.	4.8	110
492	Charge-transfer and thermochromic phenomena in solid polyelectrolytes. Macromolecules, 1986, 19, 1815-1824.	4.8	64
493	Surface-enhanced rate of molecular alignment in a liquid-crystal polymer. Macromolecules, 1986, 19, 2459-2461.	4.8	4
494	Two-dimensional process modeling: A description of the SAFEPRO program. IBM Journal of Research and Development, 1985, 29, 229-241.	3.1	22
495	Single-Molecule Charge Transport in Discrete, Ï€-Stacked Pyridinium Dimers. SSRN Electronic Journal, 0, , .	0.4	O