MarÃ-a del Mar Contreras GÃ;mez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4026931/publications.pdf

Version: 2024-02-01

	66343	88630
5,492	42	70
citations	h-index	g-index
112	112	6915
docs citations	times ranked	citing authors
	citations 112	5,49242citationsh-index112112

#	Article	IF	CITATIONS
1	Antimicrobial, Antioxidant and Other Pharmacological Activities of <i>Ocimum</i> Species: Potential to Be Used as Food Preservatives and Functional Ingredients. Food Reviews International, 2023, 39, 1547-1577.	8.4	4
2	Exploitation of olive tree pruning biomass through hydrothermal pretreatments. Industrial Crops and Products, 2022, 176, 114425.	5.2	12
3	HPLC–DAD–ESI/MS profiles of bioactive compounds, antioxidant and anticholinesterase activities of <i>Ephedra alata</i> subsp. alenda growing in Algeria. Natural Product Research, 2022, 36, 5910-5915.	1.8	6
4	Papaver Plants: Current Insights on Phytochemical and Nutritional Composition Along with Biotechnological Applications. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-23.	4.0	13
5	Phytochemical Profiling of <i>Ephedra alata subsp.</i> alenda Seeds by High-Performance Liquid Chromatography—Electrospray Ionization—Quadrupole-Time-of-Flight-Mass Spectrometry (HPLC-ESI-QTOF-MS), Molecular Docking, and Antioxidant, Anti-diabetic, and Acetylcholinesterase Inhibition. Analytical Letters. 2022. 55, 2450-2466.	1.8	11
6	Residues from grapevine and wine production as feedstock for a biorefinery. Food and Bioproducts Processing, 2022, 134, 56-79.	3.6	25
7	The potential role of olive groves to deliver carbon dioxide removal in a carbon-neutral Europe: Opportunities and challenges. Renewable and Sustainable Energy Reviews, 2022, 165, 112609.	16.4	13
8	In vivo evaluation and molecular docking studies of Schinus molle L. fruit extract protective effect against isoproterenol-induced infarction in rats. Environmental Science and Pollution Research, 2022, 29, 80910-80925.	5.3	5
9	A comparative study on the metabolites profiling of linseed cakes from Egyptian cultivars and antioxidant activity applying mass spectrometry-based analysis and chemometrics. Food Chemistry, 2022, 395, 133524.	8.2	4
10	Antioxidant activity and characterization of flavonoids and phenolic acids of <i>Ammoides atlantica</i> by RP–UHPLC–ESI–QTOF–MS ⁿ . Natural Product Research, 2021, 35, 1639-16	4 3 : ⁸	8
11	New insights into free and bound phenolic compounds as antioxidant cluster in tea seed oil: Distribution and contribution. LWT - Food Science and Technology, 2021, 136, 110315.	5.2	18
12	Olive Pomace-Derived Biomasses Fractionation through a Two-Step Extraction Based on the Use of Ultrasounds: Chemical Characteristics. Foods, 2021, 10, 111.	4.3	30
13	Production of renewable products from brewery spent grains. , 2021, , 305-347.		1
14	HPLC–ESI–QTOF–MS/MS profiling and therapeutic effects of Schinus terebinthifolius and Schinus molle fruits: investigation of their antioxidant, antidiabetic, anti-inflammatory and antinociceptive properties. Inflammopharmacology, 2021, 29, 467-481.	3.9	6
15	Metabolic Profiling of the Oil of Sesame of the Egyptian Cultivar â€~Giza 32' Employing LC-MS and Tandem MS-Based Untargeted Method. Foods, 2021, 10, 298.	4.3	16
16	Editorial: New Insights Into the Valorization of Agricultural and Agroindustrial Byproducts Through Biorefinery Cascade Processing. Frontiers in Energy Research, 2021, 9, .	2.3	0
17	A biorefinery approach to obtain antioxidants, lignin and sugars from exhausted olive pomace. Journal of Industrial and Engineering Chemistry, 2021, 96, 356-363.	5.8	29
18	Schinus terebinthifolius fruits intake ameliorates metabolic disorders, inflammation, oxidative stress, and related vascular dysfunction, in atherogenic diet-induced obese rats. Insight of their chemical characterization using HPLC-ESI-QTOF-MS/MS. Journal of Ethnopharmacology, 2021, 269, 113701.	4.1	8

#	Article	IF	CITATIONS
19	Nigella Plants – Traditional Uses, Bioactive Phytoconstituents, Preclinical and Clinical Studies. Frontiers in Pharmacology, 2021, 12, 625386.	3.5	37
20	Recovery of Bioactive Compounds from Industrial Exhausted Olive Pomace through Ultrasound-Assisted Extraction. Biology, 2021, 10, 514.	2.8	17
21	Sequential Extraction of Hydroxytyrosol, Mannitol and Triterpenic Acids Using a Green Optimized Procedure Based on Ultrasound. Antioxidants, 2021, 10, 1781.	5.1	10
22	Exhausted Olive Pomace Phenolic-Rich Extracts Obtention: A First Step for a Biorefinery Scheme Proposal. Proceedings (mdpi), 2021, 70, 10.	0.2	2
23	Recovery of Antioxidant Compounds from Exhausted Olive Pomace through Microwave-Assisted Extraction. , 2021, 6, .		1
24	Evaluation of Technologies for the Co-Extraction of Phenolic Compounds and Proteinaceous Material from Olive-Derived Biomasses. , 2021, 6, .		0
25	HPLC-DAD-ESI-QTOF-MS/MS profiling of Zygophyllum album roots extract and assessment of its cardioprotective effect against deltamethrin-induced myocardial injuries in rat, by suppression of oxidative stress-related inflammation and apoptosis via NF-I ^o B signaling pathway. Journal of Ethnopharmacology. 2020. 247, 112266.	4.1	29
26	Usefulness of GC-IMS for rapid quantitative analysis without sample treatment: Focus on ethanol, one of the potential classification markers of olive oils. LWT - Food Science and Technology, 2020, 120, 108897.	5.2	17
27	Avocado-Derived Biomass as a Source of Bioenergy and Bioproducts. Applied Sciences (Switzerland), 2020, 10, 8195.	2.5	38
28	Different distribution of free and bound phenolic compounds affects the oxidative stability of tea seed oil: A novel perspective on lipid antioxidation. LWT - Food Science and Technology, 2020, 129, 109389.	5.2	17
29	Integrated Profiling of Fatty Acids, Sterols and Phenolic Compounds in Tree and Herbaceous Peony Seed Oils: Marker Screening for New Resources of Vegetable Oil. Foods, 2020, 9, 770.	4.3	20
30	Olive-derived biomass as a renewable source of value-added products. Process Biochemistry, 2020, 97, 43-56.	3.7	61
31	Characterization of the lignocellulosic and sugars composition of different olive leaves cultivars. Food Chemistry, 2020, 329, 127153.	8.2	13
32	Content of phenolic compounds and mannitol in olive leaves extracts from six Spanish cultivars: Extraction with the Soxhlet method and pressurized liquids. Food Chemistry, 2020, 320, 126626.	8.2	87
33	Zygophyllum album leaves extract prevented hepatic fibrosis in rats, by reducing liver injury and suppressing oxidative stress, inflammation, apoptosis and the TGF-I ² 1/Smads signaling pathways. Exploring of bioactive compounds using HPLC–DAD–ESI–QTOF-MS/MS. Inflammopharmacology, 2020, 28, 1735-1750.	3.9	9
34	How Cultivar and Extraction Conditions Affect Antioxidants Type and Extractability for Olive Leaves Valorization. ACS Sustainable Chemistry and Engineering, 2020, 8, 5107-5118.	6.7	31
35	Zygophyllum album saponins prevent atherogenic effect induced by deltamethrin via attenuating arterial accumulation of native and oxidized LDL in rats. Ecotoxicology and Environmental Safety, 2020, 193, 110318.	6.0	13
36	Valorization of olive mill leaves through ultrasound-assisted extraction. Food Chemistry, 2020, 314, 126218.	8.2	48

#	Article	IF	CITATIONS
37	Extraction for profiling free and bound phenolic compounds in tea seed oil by deep eutectic solvents. Journal of Food Science, 2020, 85, 1450-1461.	3.1	21
38	Extraction Strategies to Recover Bioactive Compounds, Incorporation into Food and Health Benefits: Current Works and Future Challenges. Foods, 2020, 9, 393.	4.3	0
39	Avocado-Derived Biomass: Chemical Composition and Antioxidant Potential. Proceedings (mdpi), 2020, 70, .	0.2	11
40	Therapeutic Bio-Compounds from Avocado Residual Biomass. Proceedings (mdpi), 2020, 79, .	0.2	0
41	Comparison of Untapped Agroindustrial Olive Resources with Olive Leaves. Proceedings (mdpi), 2020, 79, .	0.2	1
42	Recovery of Bioactive Compounds from Exhausted Olive Pomace. Proceedings (mdpi), 2020, 79, .	0.2	4
43	Optimization of Oleuropein and Luteolin-7-O-Glucoside Extraction from Olive Leaves by Ultrasound-Assisted Technology. Energies, 2019, 12, 2486.	3.1	41
44	Veronica Plants—Drifting from Farm to Traditional Healing, Food Application, and Phytopharmacology. Molecules, 2019, 24, 2454.	3.8	66
45	Plants of the genus Vitis: Phenolic compounds, anticancer properties and clinical relevance. Trends in Food Science and Technology, 2019, 91, 362-379.	15.1	56
46	Integrated Process for Sequential Extraction of Bioactive Phenolic Compounds and Proteins from Mill and Field Olive Leaves and Effects on the Lignocellulosic Profile. Foods, 2019, 8, 531.	4.3	21
47	Quality of Phenolic Compounds: Occurrence, Health Benefits, and Applications in Food Industry. Journal of Food Quality, 2019, 2019, 1-2.	2.6	11
48	The Therapeutic Potential of the Labdane Diterpenoid Forskolin. Applied Sciences (Switzerland), 2019, 9, 4089.	2.5	15
49	Phenolic Compounds from Sesame Cake and Antioxidant Activity: A New Insight for Agri-Food Residues' Significance for Sustainable Development. Foods, 2019, 8, 432.	4.3	42
50	Thymus spp. plants - Food applications and phytopharmacy properties. Trends in Food Science and Technology, 2019, 85, 287-306.	15.1	74
51	Extraction of oleuropein and luteolin-7-O-glucoside from olive leaves: Optimization of technique and operating conditions. Food Chemistry, 2019, 293, 161-168.	8.2	62
52	A robustness study of calibration models for olive oil classification: Targeted and non-targeted fingerprint approaches based on GC-IMS. Food Chemistry, 2019, 288, 315-324.	8.2	72
53	Protein extraction from agri-food residues for integration in biorefinery: Potential techniques and current status. Bioresource Technology, 2019, 280, 459-477.	9.6	137
54	HS-GC-IMS and chemometric data treatment for food authenticity assessment: Olive oil mapping and classification through two different devices as an example. Food Control, 2019, 98, 82-93.	5.5	63

#	Article	IF	CITATIONS
55	Phytochemical characterization of bioactive compounds composition of <i>Rosmarinus eriocalyx</i> by RP–HPLC–ESI–QTOF–MS. Natural Product Research, 2019, 33, 2208-2214.	1.8	9
56	Phenolic compounds as natural and multifunctional anti-obesity agents: A review. Critical Reviews in Food Science and Nutrition, 2019, 59, 1212-1229.	10.3	112
57	Red onion scales ameliorated streptozotocin-induced diabetes and diabetic nephropathy in Wistar rats in relation to their metabolite fingerprint. Diabetes Research and Clinical Practice, 2018, 140, 253-264.	2.8	53
58	Chemical characterization of polyphenols from <i>Daucus muricatus</i> growing in Algeria by RP-UHPLC-ESI-QTOF-MS/MS. Natural Product Research, 2018, 32, 982-986.	1.8	1
59	Phytochemical profiling of antiâ€inflammatory <i>Lavandula</i> extracts <i>via</i> RP–HPLC–DAD—QTOF–MS and –MS/MS: Assessment of their qualitative and quantitative differences. Electrophoresis, 2018, 39, 1284-1293.	2.4	29
60	Potential Phytopharmacy and Food Applications of <i>Capsicum</i> spp.: A Comprehensive Review. Natural Product Communications, 2018, 13, 1934578X1801301.	0.5	16
61	Thymol, thyme, and other plant sources: Health and potential uses. Phytotherapy Research, 2018, 32, 1688-1706.	5.8	315
62	Matricaria genus as a source of antimicrobial agents: From farm to pharmacy and food applications. Microbiological Research, 2018, 215, 76-88.	5.3	99
63	Ethnobotany of the genus <i>Taraxacum</i> —Phytochemicals and antimicrobial activity. Phytotherapy Research, 2018, 32, 2131-2145.	5.8	85
64	Thermal desorption-ion mobility spectrometry: A rapid sensor for the detection of cannabinoids and discrimination of Cannabis sativa L. chemotypes. Sensors and Actuators B: Chemical, 2018, 273, 1413-1424.	7.8	17
65	<i>Echinacea</i> plants as antioxidant and antibacterial agents: From traditional medicine to biotechnological applications. Phytotherapy Research, 2018, 32, 1653-1663.	5.8	100
66	Carvacrol and human health: A comprehensive review. Phytotherapy Research, 2018, 32, 1675-1687.	5.8	330
67	Salvia spp. plants-from farm to food applications and phytopharmacotherapy. Trends in Food Science and Technology, 2018, 80, 242-263.	15.1	93
68	RPâ€HPLCâ€DADâ€ESIâ€QTOFâ€MS based metabolic profiling of the potential <scp><i>Olea europaea</i></scp> byâ€product "wood―and its comparison with leaf counterpart. Phytochemical Analysis, 2017, 28, 217-229.	2.4	53
69	HPLC-DAD-QTOF-MS profiling of phenolics from leaf extracts of two Tunisian fig cultivars: Potential as a functional food. Biomedicine and Pharmacotherapy, 2017, 89, 185-193.	5.6	21
70	Protective effect of Globularia alypum leaves against deltamethrin-induced nephrotoxicity in rats and determination of its bioactive compounds using high-performance liquid chromatography coupled with electrospray ionization tandem quadrupole–time-of-flight mass spectrometry. Journal of Functional Foods, 2017, 32, 139-148.	3.4	29
71	Fatty acid and sterol composition of tea seed oils: Their comparison by the "FancyTiles―approach. Food Chemistry, 2017, 233, 302-310.	8.2	91
72	Potential of RP-UHPLC-DAD-MS for the qualitative and quantitative analysis of sofosbuvir in film coated tablets and profiling degradants. Journal of Pharmaceutical Analysis, 2017, 7, 208-213.	5.3	14

#	Article	IF	CITATIONS
73	Biosurfactant production by the crude oil degrading Stenotrophomonas sp. B-2: chemical characterization, biological activities and environmental applications. Environmental Science and Pollution Research, 2017, 24, 3769-3779.	5.3	31
74	Profiling and quantification of phenolic compounds in Camellia seed oils: Natural tea polyphenols in vegetable oil. Food Research International, 2017, 102, 184-194.	6.2	101
75	Ham quality evaluation assisted by gas chromatography ion mobility spectrometry. , 2017, , .		1
76	Alkaloids Profiling of <i> Fumaria capreolata</i> by Analytical Platforms Based on the Hyphenation of Gas Chromatography and Liquid Chromatography with Quadrupole-Time-of-Flight Mass Spectrometry. International Journal of Analytical Chemistry, 2017, 2017, 1-16.	1.0	10
77	Bioactive chemical compounds in Eremurus persicus (Joub. & Spach) Boiss. essential oil and their health implications. Cellular and Molecular Biology, 2017, 63, 1-7.	0.9	55
78	VIRTUAL LABORATORY: INTERACTIVE AND SIMULATED HIGH PERFORMANCE LIQUID CHROMATOGRAPHY. INTED Proceedings, 2017, , .	0.0	0
79	Hepatoprotective Effect and Chemical Assessment of a Selected Egyptian Chickpea Cultivar. Frontiers in Pharmacology, 2016, 7, 344.	3.5	18
80	Further exploring the absorption and enterocyte metabolism of quercetin forms in the Caco-2 model using nano-LC-TOF-MS. Electrophoresis, 2016, 37, 998-1006.	2.4	14
81	Intestinal anti-inflammatory effects of total alkaloid extract from Fumaria capreolata in the DNBS model of mice colitis and intestinal epithelial CMT93 cells. Phytomedicine, 2016, 23, 901-913.	5.3	32
82	Antihyperlipidemic and Antioxidant Activities of Edible Tunisian Ficus carica L. Fruits in High Fat Diet-Induced Hyperlipidemic Rats. Plant Foods for Human Nutrition, 2016, 71, 183-189.	3.2	47
83	Anti-inflammatory activity of hydroalcoholic extracts of Lavandula dentata L. and Lavandula stoechas L Journal of Ethnopharmacology, 2016, 190, 142-158.	4.1	64
84	Bioactive Phenolic Compounds from Olea europaea: A Challenge for Analytical Chemistry. , 2015, , 261-298.		5
85	Identification and characterization of antioxidant peptides from chickpea protein hydrolysates. Food Chemistry, 2015, 180, 194-202.	8.2	146
86	New insights into the qualitative phenolic profile of Ficus carica L. fruits and leaves from Tunisia using ultra-high-performance liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry and their antioxidant activity. RSC Advances, 2015, 5, 20035-20050.	3.6	59
87	Profiling of phenolic and other compounds from Egyptian cultivars of chickpea (Cicer arietinum L.) and antioxidant activity: a comparative study. RSC Advances, 2015, 5, 17751-17767.	3.6	70
88	Assessment of the distribution of phenolic compounds and contribution to the antioxidant activity in Tunisian fig leaves, fruits, skins and pulps using mass spectrometry-based analysis. Food and Function, 2015, 6, 3663-3677.	4.6	61
89	Nano-liquid chromatography coupled to time-of-flight mass spectrometry for phenolic profiling: A case study in cranberry syrups. Talanta, 2015, 132, 929-938.	5.5	31
90	Assessment of the stability of proanthocyanidins and other phenolic compounds in cranberry syrup after gamma-irradiation treatment and during storage. Food Chemistry, 2015, 174, 392-399.	8.2	32

#	Article	IF	CITATIONS
91	Isolation, comprehensive characterization and antioxidant activities of Theobroma cacao extract. Journal of Functional Foods, 2014, 10, 485-498.	3.4	71
92	UHPLCâ€ESIâ€QTOFâ€MSâ€based metabolic profiling of <i>Vicia faba</i> L. (Fabaceae) seeds as a key strategy fo characterization in foodomics. Electrophoresis, 2014, 35, 1571-1581.	^{or} 2.4	77
93	Reversed-phase ultra-high-performance liquid chromatography coupled to electrospray ionization-quadrupole-time-of-flight mass spectrometry as a powerful tool for metabolic profiling of vegetables: Lactuca sativa as an example of its application. Journal of Chromatography A, 2013, 1313, 212-227.	3.7	110
94	Identification of polyphenols and their metabolites in human urine after cranberry-syrup consumption. Food and Chemical Toxicology, 2013, 55, 484-492.	3.6	37
95	Resistance of casein-derived bioactive peptides to simulated gastrointestinal digestion. International Dairy Journal, 2013, 32, 71-78.	3.0	41
96	Bioavailability of antihypertensive lactoferricin B-derived peptides: Transepithelial transport and resistance to intestinal and plasma peptidases. International Dairy Journal, 2013, 32, 169-174.	3.0	47
97	Absorption of Casein Antihypertensive Peptides through an In Vitro Model of Intestinal Epithelium. Food Digestion, 2012, 3, 16-24.	0.9	33
98	Long-term intake of a milk casein hydrolysate attenuates the development of hypertension and involves cardiovascular benefits. Pharmacological Research, 2011, 63, 398-404.	7.1	50
99	Food-grade production of an antihypertensive casein hydrolysate and resistance of active peptides to drying and storage. International Dairy Journal, 2011, 21, 470-476.	3.0	53
100	Optimisation, by response surface methodology, of degree of hydrolysis and antioxidant and ACE-inhibitory activities of whey protein hydrolysates obtained with cardoon extract. International Dairy Journal, 2011, 21, 926-933.	3.0	72
101	Production of antioxidant hydrolyzates from a whey protein concentrate with thermolysin: Optimization by response surface methodology. LWT - Food Science and Technology, 2011, 44, 9-15.	5.2	163
102	Novel whey-derived peptides with inhibitory effect against angiotensin-converting enzyme: In vitro effect and stability to gastrointestinal enzymes. Peptides, 2011, 32, 1013-1019.	2.4	132
103	Antihypertensive peptides: Production, bioavailability and incorporation into foods. Advances in Colloid and Interface Science, 2011, 165, 23-35.	14.7	396
104	Monitoring the large-scale production of the antihypertensive peptides RYLGY and AYFYPEL by HPLC-MS. Analytical and Bioanalytical Chemistry, 2010, 397, 2825-2832.	3.7	23
105	Acute and repeated dose (4 weeks) oral toxicity studies of two antihypertensive peptides, RYLGY and AYFYPEL, that correspond to fragments (90–94) and (143–149) from α s1 -casein. Food and Chemical Toxicology, 2010, 48, 1836-1845.	3.6	37
106	Milk versus caseinophosphopeptides added to fruit beverage: Resistance and release from simulated gastrointestinal digestion. Peptides, 2010, 31, 555-561.	2.4	26
107	ACE-inhibitory and antihypertensive properties of a bovine casein hydrolysate. Food Chemistry, 2009, 112, 211-214.	8.2	127
108	Stability to gastrointestinal enzymes and structure–activity relationship of β-casein-peptides with antihypertensive properties. Peptides, 2009, 30, 1848-1853.	2.4	137

#	Article	IF	CITATIONS
109	Novel casein-derived peptides with antihypertensive activity. International Dairy Journal, 2009, 19, 566-573.	3.0	206
110	Application of Mass Spectrometry to the Characterization and Quantification of Food-Derived Bioactive Peptides. Journal of AOAC INTERNATIONAL, 2008, 91, 981-994.	1.5	46
111	Protocol for the analysis of phenolic compounds using nano-liquid chromatography-mass spectrometry and Caco-2 assays: from the evaluation of the uptake to the enterocyte metabolism. Protocol Exchange, 0, , .	0.3	0
112	Combined Extraction and Ethanol Organosolv Fractionation of Exhausted Olive Pomace for Bioactive Compounds. Advanced Sustainable Systems, 0, , 2100361.	5.3	8