
Giandomenica Iezzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/402690/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of TPM2 and CNN1 as Novel Prognostic Markers in Functionally Characterized Human Colon Cancer-Associated Stromal Cells. Cancers, 2022, 14, 2024.	3.7	4
2	IL-22-mediates Cross-talk between Tumor Cells and Immune Cells Associated with Favorable Prognosis in Human Colorectal Cancer. , 2021, 3, 118-121.		2
3	CD16â€158â€valine chimeric receptor T cells overcome the resistance of KRASâ€mutated colorectal carcinoma cells to cetuximab. International Journal of Cancer, 2020, 146, 2531-2538.	5.1	15
4	Infiltration by IL22-Producing T Cells Promotes Neutrophil Recruitment and Predicts Favorable Clinical Outcome in Human Colorectal Cancer. Cancer Immunology Research, 2020, 8, 1452-1462.	3.4	15
5	Avelumab in gastric cancer. Immunotherapy, 2019, 11, 759-768.	2.0	17
6	Pro-tumoral role of gut bacteria: sabotaging immune cell recruitment. Annals of Translational Medicine, 2019, 7, 59-59.	1.7	0
7	Maintenance of Primary Human Colorectal Cancer Microenvironment Using a Perfusion Bioreactorâ€Based 3D Culture System. Advanced Biology, 2019, 3, e1800300.	3.0	21
8	A replication-incompetent CD154/40L recombinant vaccinia virus induces direct and macrophage-mediated antitumor effects <i>in vitro</i> and <i>in vivo</i> . OncoImmunology, 2019, 8, e1568162.	4.6	5
9	Gut microbiota modulate T cell trafficking into human colorectal cancer. Gut, 2018, 67, 1984-1994.	12.1	189
10	In Vitro Modeling of Tumor–Immune System Interaction. ACS Biomaterials Science and Engineering, 2018, 4, 314-323.	5.2	21
11	The Interplay Between Neutrophils and CD8+ T Cells Improves Survival in Human Colorectal Cancer. Clinical Cancer Research, 2017, 23, 3847-3858.	7.0	151
12	<i>Ex-vivo</i> assessment of drug response on breast cancer primary tissue with preserved microenvironments. Oncolmmunology, 2017, 6, e1331798.	4.6	35
13	MAGE-A Antigens and Cancer Immunotherapy. Frontiers in Medicine, 2017, 4, 18.	2.6	54
14	The hyaluronan-mediated motility receptor RHAMM promotes growth, invasiveness and dissemination of colorectal cancer. Oncotarget, 2017, 8, 70617-70629.	1.8	48
15	Induction of hypoxia and necrosis in multicellular tumor spheroids is associated with resistance to chemotherapy treatment. Oncotarget, 2017, 8, 1725-1736.	1.8	154
16	Blocking of LFAâ€1 enhances expansion of Th17 cells induced by human CD14 ⁺ CD16 ⁺⁺ nonclassical monocytes. European Journal of Immunology, 2015, 45, 1414-1425.	2.9	9
17	Bioreactor-engineered cancer tissue-like structures mimic phenotypes, gene expression profiles and drug resistance patterns observed "inÂvivo― Biomaterials, 2015, 62, 138-146.	11.4	59
18	Absence of myeloperoxidase and CD8 positive cells in colorectal cancer infiltrates identifies patients with severe prognosis. Oncolmmunology, 2015, 4, e1050574.	4.6	20

GIANDOMENICA IEZZI

#	Article	IF	CITATIONS
19	Expression of the hyaluronan-mediated motility receptor RHAMM in tumor budding cells identifies aggressive colorectal cancers. Human Pathology, 2015, 46, 1573-1581.	2.0	36
20	OX40 expression enhances the prognostic significance of CD8 positive lymphocyte infiltration in colorectal cancer. Oncotarget, 2015, 6, 37588-37599.	1.8	37
21	High Frequency of CD8 Positive Lymphocyte Infiltration Correlates with Lack of Lymph Node Involvement in Early Rectal Cancer. Disease Markers, 2014, 2014, 1-7.	1.3	16
22	NK cells and T cells cooperate during the clinical course of colorectal cancer. Oncolmmunology, 2014, 3, e952197.	4.6	110
23	Mesenchymal stromal cells induce epithelialâ€toâ€mesenchymal transition in human colorectal cancer cells through the expression of surfaceâ€bound TGFâ€Î². International Journal of Cancer, 2014, 134, 2583-2594.	5.1	58
24	HLA Class II Antigen Expression in Colorectal Carcinoma Tumors as a Favorable Prognostic Marker. Neoplasia, 2014, 16, 31-W15.	5.3	99
25	GM-CSF Production by Tumor Cells Is Associated with Improved Survival in Colorectal Cancer. Clinical Cancer Research, 2014, 20, 3094-3106.	7.0	57
26	"ln vitro―3D models of tumor-immune system interaction. Advanced Drug Delivery Reviews, 2014, 79-80, 145-154.	13.7	78
27	mRNA transfection-based, feeder-free, induced pluripotent stem cells derived from adipose tissue of a 50-year-old patient. Metabolic Engineering, 2013, 18, 9-24.	7.0	41
28	Clinical impact of programmed cell death ligand 1 expression in colorectal cancer. European Journal of Cancer, 2013, 49, 2233-2242.	2.8	384
29	Colorectal carcinoma infiltration by myeloperoxidase-expressing neutrophil granulocytes is associated with favorable prognosis. Oncolmmunology, 2013, 2, e25990.	4.6	15
30	High Myeloperoxidase Positive Cell Infiltration in Colorectal Cancer Is an Independent Favorable Prognostic Factor. PLoS ONE, 2013, 8, e64814.	2.5	92
31	CD133+, CD166+CD44+, and CD24+CD44+ Phenotypes Fail to Reliably Identify Cell Populations with Cancer Stem Cell Functional Features in Established Human Colorectal Cancer Cell Lines. Stem Cells Translational Medicine, 2012, 1, 592-603.	3.3	55
32	Tumor infiltration by FcγRIII (CD16)+ myeloid cells is associated with improved survival in patients with colorectal carcinoma. International Journal of Cancer, 2011, 128, 2663-2672.	5.1	88
33	MACEâ€A10 is a nuclear protein frequently expressed in high percentages of tumor cells in lung, skin and urothelial malignancies. International Journal of Cancer, 2011, 129, 1137-1148.	5.1	46
34	Fibroblast growth factor 2 and plateletâ€derived growth factor, but not platelet lysate, induce proliferationâ€dependent, functional class II major histocompatibility complex antigen in human mesenchymal stem cells. Arthritis and Rheumatism, 2010, 62, 3815-3825.	6.7	78
35	TIA-1 Cytotoxic Granule-Associated RNA Binding Protein Improves the Prognostic Performance of CD8 in Mismatch Repair-Proficient Colorectal Cancer. PLoS ONE, 2010, 5, e14282.	2.5	52
36	CD40–CD40L cross-talk integrates strong antigenic signals and microbial stimuli to induce development of IL-17-producing CD4 ⁺ T cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 876-881.	7.1	182

GIANDOMENICA IEZZI

#	Article	IF	CITATIONS
37	A Lymphotoxin-Driven Pathway to Hepatocellular Carcinoma. Cancer Cell, 2009, 16, 295-308.	16.8	345
38	Systematic assessment of the prognostic impact of membranous CD44v6 protein expression in colorectal cancer. Histopathology, 2009, 55, 564-575.	2.9	46
39	Differential Responsiveness to IL-2, IL-7, and IL-15 Common Receptor Î ³ Chain Cytokines by Antigen-specific Peripheral Blood Naive or Memory Cytotoxic CD8+ T Cells From Healthy Donors and Melanoma Patients. Journal of Immunotherapy, 2009, 32, 252-261.	2.4	11
40	GM-CSF mediates autoimmunity by enhancing IL-6–dependent Th17 cell development and survival. Journal of Experimental Medicine, 2008, 205, 2281-2294.	8.5	234
41	Tick Saliva Inhibits Dendritic Cell Migration, Maturation, and Function while Promoting Development of Th2 Responses. Journal of Immunology, 2008, 180, 6186-6192.	0.8	82
42	Ryanodine Receptor Activation by Cav1.2 Is Involved in Dendritic Cell Major Histocompatibility Complex Class II Surface Expression. Journal of Biological Chemistry, 2008, 283, 34913-34922.	3.4	29
43	Efficient Stimulation of T Cell Responses by Human IFN-α–induced Dendritic Cells Does Not Require Toll-like Receptor Triggering. Journal of Immunotherapy, 2008, 31, 466-474.	2.4	10
44	Prolonged exposure of dendritic cells to maturation stimuli favors the induction of type-2 cytotoxic T lymphocytes. European Journal of Immunology, 2006, 36, 3157-3166.	2.9	6
45	Neutralization of IL-17 by active vaccination inhibits IL-23-dependent autoimmune myocarditis. European Journal of Immunology, 2006, 36, 2849-2856.	2.9	159
46	Type 2 Cytotoxic T Lymphocytes Modulate the Activity of Dendritic Cells Toward Type 2 Immune Responses. Journal of Immunology, 2006, 177, 2131-2137.	0.8	21
47	Lymph Node Resident Rather Than Skin-Derived Dendritic Cells Initiate Specific T Cell Responses after <i>Leishmania major</i> Infection. Journal of Immunology, 2006, 177, 1250-1256.	0.8	95
48	Activation of Dendritic Cells through the Interleukin 1 Receptor 1 Is Critical for the Induction of Autoimmune Myocarditis. Journal of Experimental Medicine, 2003, 197, 323-331.	8.5	145
49	Migration and Function of Antigen-Primed Nonpolarized T Lymphocytes in Vivo. Journal of Experimental Medicine, 2001, 193, 987-994.	8.5	154
50	Cancer immunotherapy: synthetic and natural peptides in the balance. Trends in Immunology, 1999, 20, 457-462.	7.5	22
51	From TCR Engagement to T Cell Activation. Cell, 1999, 96, 1-4.	28.9	355
52	The Duration of Antigenic Stimulation Determines the Fate of Naive and Effector T Cells. Immunity, 1998, 8, 89-95.	14.3	794
53	Heterogeneous effects of B7-1 and B7-2 in the induction of both protective and therapeutic anti-tumor immunity against different mouse tumors. European Journal of Immunology, 1996, 26, 1851-1859.	2.9	52
54	In vitro priming of cytotoxic T lymphocytes against poorly immunogenic epitopes by engineered antigen-presenting cells. European Journal of Immunology, 1994, 24, 2691-2698.	2.9	45