
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4026831/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of Cyclopropane Formation in the Biosyntheses of Hormaomycins and Belactosins: Sequential Nitration and Cyclopropanation by Metalloenzymes. Angewandte Chemie, 2022, 134, .	1.6	3
2	ldentification of Cyclopropane Formation in the Biosyntheses of Hormaomycins and Belactosins: Sequential Nitration and Cyclopropanation by Metalloenzymes. Angewandte Chemie - International Edition, 2022, 61, e202113189.	7.2	18
3	Biosynthetic Gene Cluster of Linaridin Peptides Contains Epimerase Gene. ChemBioChem, 2022, 23, .	1.3	10
4	Identification of the peptide epimerase MslH responsible for <scp>d</scp> -amino acid introduction at the C-terminus of ribosomal peptides. Chemical Science, 2021, 12, 2567-2574.	3.7	13
5	Flavonoids from Woodfordia fruticosa as potential SmltD inhibitors in the alternative biosynthetic pathway of peptidoglycan. Bioorganic and Medicinal Chemistry Letters, 2021, 36, 127787.	1.0	2
6	Discovery of an alternative pathway of peptidoglycan biosynthesis: A new target for pathway specific inhibitors. Journal of Industrial Microbiology and Biotechnology, 2021, 48, .	1.4	4
7	Identification of pulvomycin as an inhibitor of the futalosine pathway. Journal of Antibiotics, 2021, 74, 825-829.	1.0	2
8	Identification of actinomycin D as a specific inhibitor of the alternative pathway of peptidoglycan biosynthesis. Journal of Antibiotics, 2020, 73, 125-127.	1.0	10
9	High Production of Ergothioneine in <i>Escherichia coli</i> using the Sulfoxide Synthase from <i>Methylobacterium</i> strains. Journal of Agricultural and Food Chemistry, 2020, 68, 6390-6394.	2.4	16
10	Off-Loading Mechanism of Products in Polyunsaturated Fatty Acid Synthases. ACS Chemical Biology, 2020, 15, 651-656.	1.6	11
11	Recent advances in functional analysis of polyunsaturated fatty acid synthases. Current Opinion in Chemical Biology, 2020, 59, 30-36.	2.8	14
12	In vitro characterization of MitE and MitB: Formation of N-acetylglucosaminyl-3-amino-5-hydroxybenzoyl-MmcB as a key intermediate in the biosynthesis of antitumor antibiotic mitomycins. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 2076-2078.	1.0	6
13	Subtle Control of Carbon Chain Length in Polyunsaturated Fatty Acid Synthases. ACS Chemical Biology, 2019, 14, 2553-2556.	1.6	9
14	Involvement of Peptide Epimerization in Poly-γ-glutamic Acid Biosynthesis. Organic Letters, 2019, 21, 3972-3975.	2.4	11
15	Control Mechanism for Carbonâ€Chain Length in Polyunsaturated Fattyâ€Acid Synthases. Angewandte Chemie, 2019, 131, 6677-6682.	1.6	2
16	Control Mechanism for Carbonâ€Chain Length in Polyunsaturated Fattyâ€Acid Synthases. Angewandte Chemie - International Edition, 2019, 58, 6605-6610.	7.2	31
17	Amino Acid Residues Recognizing Isomeric Glutamate Substrates in UDP- <i>N</i> -acetylmuramic acid- <scp>l</scp> -alanine-glutamate Synthetases. ACS Chemical Biology, 2019, 14, 975-978.	1.6	5
18	Gram-scale fermentative production of ergothioneine driven by overproduction of cysteine in Escherichia coli. Scientific Reports, 2019, 9, 1895.	1.6	44

#	Article	IF	CITATIONS
19	Searching for potent and specific antibiotics against pathogenic Helicobacter and Campylobacter strains. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 409-414.	1.4	3
20	Control Mechanism for <i>cis</i> Doubleâ€Bond Formation by Polyunsaturated Fattyâ€Acid Synthases. Angewandte Chemie - International Edition, 2019, 58, 2326-2330.	7.2	33
21	Control Mechanism for <i>cis</i> Doubleâ€Bond Formation by Polyunsaturated Fattyâ€Acid Synthases. Angewandte Chemie, 2019, 131, 2348-2352.	1.6	3
22	Ergothioneine production with <i>Aspergillus oryzae</i> . Bioscience, Biotechnology and Biochemistry, 2019, 83, 181-184.	0.6	40
23	Enzymatic Formation of a Skipped Methyl‣ubstituted Octaprenyl Side Chain of Longestin (KSâ€505a): Involvement of Homoâ€ŀPP as a Common Extender Unit. Angewandte Chemie - International Edition, 2018, 57, 6629-6632.	7.2	27
24	Heterologous and High Production of Ergothioneine in <i>Escherichia coli</i> . Journal of Agricultural and Food Chemistry, 2018, 66, 1191-1196.	2.4	41
25	Enzymatic Formation of a Skipped Methylâ€Substituted Octaprenyl Side Chain of Longestin (KSâ€505a): Involvement of Homoâ€IPP as a Common Extender Unit. Angewandte Chemie, 2018, 130, 6739-6742.	1.6	7
26	Functional analysis of methyltransferases participating in streptothricin-related antibiotic biosynthesis. Journal of Bioscience and Bioengineering, 2018, 125, 148-154.	1.1	1
27	Novel enzymology in futalosine-dependent menaquinone biosynthesis. Current Opinion in Chemical Biology, 2018, 47, 134-141.	2.8	31
28	Total Biosynthesis of Brassicicenes: Identification of a Key Enzyme for Skeletal Diversification. Organic Letters, 2018, 20, 6178-6182.	2.4	21
29	Biosynthetic Gene Cluster of a <scp>d</scp> â€Tryptophanâ€Containing Lasso Peptide, MSâ€271. ChemBioChem, 2018, 19, 2045-2048.	1.3	40
30	Peptide Epimerization Machineries Found in Microorganisms. Frontiers in Microbiology, 2018, 9, 156.	1.5	19
31	Aplasmomycin and boromycin are specific inhibitors of the futalosine pathway. Journal of Antibiotics, 2018, 71, 968-970.	1.0	22
32	放線èŒãŒç"Ÿãį出ã⊷ã¥ç−ʻä¼¼ãfšãf−ãfãf‰åŒ−å•̂物. Kagaku To Seibutsu, 2018, 56, 76-78.	0.0	0
33	Biosynthesis of the Carbonylmethylene Structure Found in the Ketomemicin Class of Pseudotripeptides. Angewandte Chemie - International Edition, 2017, 56, 2026-2029.	7.2	17
34	Biosynthesis of the Carbonylmethylene Structure Found in the Ketomemicin Class of Pseudotripeptides. Angewandte Chemie, 2017, 129, 2058-2061.	1.6	2
35	Identification of tirandamycins as specific inhibitors of the futalosine pathway. Journal of Antibiotics, 2017, 70, 798-800.	1.0	20
36	Biosynthesis of Oligopeptides Using ATPâ€Grasp Enzymes. Chemistry - A European Journal, 2017, 23, 10714-10724.	1.7	22

TOHRU DAIRI

#	Article	IF	CITATIONS
37	<i>N</i> -Phenylacetylation and Nonribosomal Peptide Synthetases with Substrate Promiscuity for Biosynthesis of Heptapeptide Variants, JBIR-78 and JBIR-95. ACS Chemical Biology, 2017, 12, 1813-1819.	1.6	11
38	A Glycopeptidyl-Glutamate Epimerase for Bacterial Peptidoglycan Biosynthesis. Journal of the American Chemical Society, 2017, 139, 4243-4245.	6.6	11
39	Synthesis of Acylborons by Ozonolysis of Alkenylboronates: Preparation of an Enantioenriched Amino Acid Acylboronate. Angewandte Chemie - International Edition, 2017, 56, 13847-13851.	7.2	64
40	Synthesis of Acylborons by Ozonolysis of Alkenylboronates: Preparation of an Enantioenriched Amino Acid Acylboronate. Angewandte Chemie, 2017, 129, 14035-14039.	1.6	33
41	Frontispiece: Biosynthesis of Oligopeptides Using ATPâ€Grasp Enzymes. Chemistry - A European Journal, 2017, 23, .	1.7	0
42	Exploring Peptide Ligase Orthologs in Actinobacteria—Discovery of Pseudopeptide Natural Products, Ketomemicins. ACS Chemical Biology, 2016, 11, 1686-1692.	1.6	20
43	Advanced functionalization of polyhydroxyalkanoate via the UV-initiated thiol-ene click reaction. Applied Microbiology and Biotechnology, 2016, 100, 4375-4383.	1.7	8
44	Biosynthesis of Shearinine: Diversification of a Tandem Prenyl Moiety of Fungal Indole Diterpenes. Organic Letters, 2016, 18, 5026-5029.	2.4	39
45	Enhanced production of polyunsaturated fatty acids by enzyme engineering of tandem acyl carrier proteins. Scientific Reports, 2016, 6, 35441.	1.6	51
46	Characterization of three amidinotransferases involved in the biosynthesis of ketomemicins. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3662-3664.	1.0	9
47	Structure and activity relationships of the anti-Mycobacterium antibiotics resorcinomycin and pheganomycin. Journal of Antibiotics, 2016, 69, 119-120.	1.0	5
48	Ergothioneine protects Streptomyces coelicolor A3(2) from oxidative stresses. Journal of Bioscience and Bioengineering, 2015, 120, 294-298.	1.1	28
49	Identification and analysis of the resorcinomycin biosynthetic gene cluster. Bioscience, Biotechnology and Biochemistry, 2015, 79, 1833-1837.	0.6	12
50	A peptide ligase and the ribosome cooperate to synthesize the peptide pheganomycin. Nature Chemical Biology, 2015, 11, 71-76.	3.9	53
51	A fungal prenyltransferase catalyzes the regular di-prenylation at positions 20 and 21 of paxilline. Bioscience, Biotechnology and Biochemistry, 2014, 78, 448-454.	0.6	11
52	New gene responsible for para-aminobenzoate biosynthesis. Journal of Bioscience and Bioengineering, 2014, 117, 178-183.	1.1	12
53	Functional analysis of a prenyltransferase gene (paxD) in the paxilline biosynthetic gene cluster. Applied Microbiology and Biotechnology, 2014, 98, 199-206.	1.7	18
54	Rapid Reconstitution of Biosynthetic Machinery for Fungal Metabolites in <i>Aspergillus oryzae</i> : Total Biosynthesis of Aflatrem. ChemBioChem, 2014, 15, 2076-2080.	1.3	76

TOHRU DAIRI

#	Article	IF	CITATIONS
55	Menaquinone Biosynthesis: Formation of Aminofutalosine Requires a Unique Radical SAM Enzyme. Journal of the American Chemical Society, 2013, 135, 15318-15321.	6.6	94
56	Cellulose complementing factor (Ccp) is a new member of the cellulose synthase complex (terminal) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf : 71
57	Reconstitution of Biosynthetic Machinery for Indole-Diterpene Paxilline in <i>Aspergillus oryzae</i> . Journal of the American Chemical Society, 2013, 135, 1260-1263.	6.6	170
58	<i>In Vitro</i> Reconstitution of the Radical <i>S</i> -Adenosylmethionine Enzyme MqnC Involved in the Biosynthesis of Futalosine-Derived Menaquinone. Biochemistry, 2013, 52, 4592-4594.	1.2	37

59	Regiospecificities and Prenylation Mode Specificities of the Fungal Indole Diterpene Prenyltransferases AtmD and PaxD. Applied and Environmental Microbiology, 2013, 79, 7298-7304.	1.4	22
60	Menaquinone Biosyntheses in Microorganisms. Methods in Enzymology, 2012, 515, 107-122.	0.4	35
61	Cellulose production by Enterobacter sp. CJF-002 and identification of genes for cellulose biosynthesis. Cellulose, 2012, 19, 1989-2001.	2.4	35
62	Molecular Breeding of a Fungus Producing a Precursor Diterpene Suitable for Semi-Synthesis by Dissection of the Biosynthetic Machinery. PLoS ONE, 2012, 7, e42090.	1.1	18
63	An Enzyme Catalyzing Oâ€Prenylation of the Glucose Moiety of Fusicoccin A, a Diterpene Glucoside Produced by the Fungus <i>Phomopsis amygdali</i> . ChemBioChem, 2012, 13, 566-573.	1.3	19
64	Biosynthetic Genes and Enzymes of Isoprenoids Produced by Actinomycetes. , 2012, , 29-49.		0
65	Dioxygenases, Key Enzymes to Determine the Aglycon Structures of Fusicoccin and Brassicicene, Diterpene Compounds Produced by Fungi. Journal of the American Chemical Society, 2011, 133, 2548-2555.	6.6	36
66	Reveromycin A biosynthesis uses RevG and RevJ for stereospecific spiroacetal formation. Nature Chemical Biology, 2011, 7, 461-468.	3.9	80
67	Branched fatty acids inhibit the biosynthesis of menaquinone in Helicobacter pylori. Journal of Antibiotics, 2011, 64, 151-153.	1.0	23
68	Synthesis of (±)-cyclic dehypoxanthine futalosine, the biosynthetic intermediate in an alternative biosynthetic pathway for menaquinones. Tetrahedron Letters, 2011, 52, 4934-4937.	0.7	2
69	Convergent strategies in biosynthesis. Natural Product Reports, 2011, 28, 1054.	5.2	37
70	Chemo-enzymatic synthesis of polyhydroxyalkanoate (PHA) incorporating 2-hydroxybutyrate by wild-type class I PHA synthase from Ralstonia eutropha. Applied Microbiology and Biotechnology, 2011, 92, 509-517.	1.7	42
71	Diversity of the Early Step of the Futalosine Pathway. Antimicrobial Agents and Chemotherapy, 2011, 55, 913-916.	1.4	35
72	Substrate specificity of the CYC2 enzyme from Kitasatospora griseola: production of sclarene, biformene, and novel bicyclic diterpenes by the enzymatic reactions of labdane- and halimane-type diterpene diphosphates. Tetrahedron Letters, 2010, 51, 125-128.	0.7	16

5

#	Article	IF	CITATIONS
73	Analysis of the <i>Lactobacillus</i> Metabolic Pathway. Applied and Environmental Microbiology, 2010, 76, 7299-7301.	1.4	15
74	Isoprenoid in Actinomycetes. , 2010, , 789-814.		2
75	An alternative menaquinone biosynthetic pathway operating in microorganisms: an attractive target for drug discovery to pathogenic Helicobacter and Chlamydia strains. Journal of Antibiotics, 2009, 62, 347-352.	1.0	45
76	Identification and functional analysis of brassicicene C biosynthetic gene cluster in Alternaria brassicicola. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 870-874.	1.0	43
77	Functional analyses of cytochrome P450 genes responsible for the early steps of brassicicene C biosynthesis. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 5640-5643.	1.0	23
78	Biosynthetic Gene-Based Secondary Metabolite Screening: A New Diterpene, Methyl Phomopsenonate, from the Fungus <i>Phomopsis amygdali</i> . Journal of Organic Chemistry, 2009, 74, 1541-1548.	1.7	78
79	Enzymatic Properties of Futalosine Hydrolase, an Enzyme Essential to a Newly Identified Menaquinone Biosynthetic Pathway. Bioscience, Biotechnology and Biochemistry, 2009, 73, 1137-1141.	0.6	26
80	Cloning of the Gene Cluster Responsible for the Biosynthesis of Brasilicardin A, a Unique Diterpenoid. Journal of Antibiotics, 2008, 61, 164-174.	1.0	53
81	An Alternative Menaquinone Biosynthetic Pathway Operating in Microorganisms. Science, 2008, 321, 1670-1673.	6.0	233
82	Identification of Diterpene Biosynthetic Gene Clusters and Functional Analysis of Labdane-Related Diterpene Cyclases in <i>Phomopsis amygdali</i> . Bioscience, Biotechnology and Biochemistry, 2008, 72, 1038-1047.	0.6	38
83	Studies on A New Biosynthetic Pathway for Menaquinone. Journal of the American Chemical Society, 2008, 130, 5614-5615.	6.6	61
84	Fusicoccins are biosynthesized by an unusual chimera diterpene synthase in fungi. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3084-3088.	3.3	177
85	Cloning of the Gene Cluster Responsible for Biosynthesis of KS-505a (Longestin), a Unique Tetraterpenoid. Bioscience, Biotechnology and Biochemistry, 2007, 71, 3072-3081.	0.6	21
86	Biosynthesis of a Natural Polyketide-Isoprenoid Hybrid Compound, Furaquinocin A: Identification and Heterologous Expression of the Gene Cluster. Journal of Bacteriology, 2006, 188, 1236-1244.	1.0	76
87	Studies on Biosynthetic Genes and Enzymes of Isoprenoids Produced by Actinomycetes. Journal of Antibiotics, 2005, 58, 227-243.	1.0	69
88	Mycobacterium tuberculosis H37Rv3377c encodes the diterpene cyclase for producing the halimane skeleton. Chemical Communications, 2005, , 1016.	2.2	71
89	Presence of Copalyl Diphosphate Synthase Gene in an Actinomycete Possessing the Mevalonate Pathway. Journal of Antibiotics, 2004, 57, 739-747.	1.0	38
90	Interconversion of the Product Specificity of Type I Eubacterial Farnesyl Diphosphate Synthase and Geranylgeranyl Diphosphate Synthase through One Amino Acid Substitution. Journal of Biochemistry, 2003, 133, 83-91.	0.9	23

#	Article	IF	CITATIONS
91	A Relationship between the Mevalonate Pathway and Isoprenoid Production in Actinomycetes. Journal of Antibiotics, 2003, 56, 957-966.	1.0	42
92	Functiona l Analysis of Eubacterial Diterpene Cyclases Responsible for Biosynthesis of a Diterpene Antibiotic, Terpentecin. Journal of Biological Chemistry, 2002, 277, 37098-37104.	1.6	82
93	Growth-phase Dependent Expression of the Mevalonate Pathway in a Terpenoid Antibiotic-producingStreptomycesStrain. Bioscience, Biotechnology and Biochemistry, 2002, 66, 808-819.	0.6	37
94	Eubacterial Diterpene Cyclase Genes Essential for Production of the Isoprenoid Antibiotic Terpentecin. Journal of Bacteriology, 2001, 183, 6085-6094.	1.0	84
95	Cloning of a Gene Cluster Encoding Enzymes Responsible for the Mevalonate Pathway from a Terpenoid-antibiotic-producing Streptomyces Strain. Bioscience, Biotechnology and Biochemistry, 2001, 65, 1627-1635.	0.6	38
96	Studies on the nonmevalonate pathway: conversion of 4-(cytidine 5′-diphospho)-2-C-methyl-d-erythritol to its 2-phospho derivative by 4-(cytidine 5′-diphospho)-2-C-methyl-d-erythritol kinase. Tetrahedron Letters, 2000, 41, 2925-2928.	0.7	107
97	Formation of 4-(cytidine 5′-diphospho)-2-C-methyl-d-erythritol from 2-C-methyl-d-erythritol 4-phosphate by 2-C-methyl-d-erythritol 4-phosphate cytidylyltransferase, a new enzyme in the nonmevalonate pathway. Tetrahedron Letters, 2000, 41, 703-706.	0.7	119
98	Studies on the nonmevalonate pathway: formation of 2-C-methyl-d-erythritol 2,4-cyclodiphosphate from 2-phospho-4-(cytidine 5′-diphospho)-2-C-methyl-d-erythritol. Tetrahedron Letters, 2000, 41, 3395-3398.	0.7	98
99	Gene cloning, biochemical characterization and physiological role of a thermostable low-specificity L-threonine aldolase from Escherichia coli. FEBS Journal, 1998, 255, 220-226.	0.2	76
100	Shotgun Cloning and Characterization of the Thymidylate Synthaseâ€Encoding Gene from <i>Mycobacterium bovis</i> BCG. Microbiology and Immunology, 1998, 42, 15-21.	0.7	3
101	The GLY1 Gene of Saccharomyces Cerevisiae Encodes a Low-Specific L-threonine Aldolase that Catalyzes Cleavage of L-allo-Threonine and L-threonine to Clycine. Expression of the Gene in Escherichia Coli and Purification and Characterization of the Enzyme. FEBS Journal, 1997, 245, 289-293.	0.2	57
102	Cloning and Nucleotide Sequence of the Gene Responsible for Chlorination of Tetracycline. Bioscience, Biotechnology and Biochemistry, 1995, 59, 1099-1106.	0.6	119
103	Organization and nature of fortimicin A (astromicin) biosynthetic genes studied using a cosmid library of Micromonospora olivasterospora DNA. Molecular Genetics and Genomics, 1992, 236, 39-48.	2.4	40
104	Common biosynthetic feature of fortimicin-group antibiotics Journal of Antibiotics, 1989, 42, 934-943.	1.0	26