
Victor Y L Leung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4026790/publications.pdf

Version: 2024-02-01

VICTOR Y L LEUNC

#	Article	IF	CITATIONS
1	Integration of a miniaturized DMMB assay with high-throughput screening for identifying regulators of proteoglycan metabolism. Scientific Reports, 2022, 12, 1083.	1.6	0
2	Current Perspectives on Nucleus Pulposus Fibrosis in Disc Degeneration and Repair. International Journal of Molecular Sciences, 2022, 23, 6612.	1.8	7
3	Transformation of resident notochordâ€descendent nucleus pulposus cells in mouse injuryâ€induced fibrotic intervertebral discs. Aging Cell, 2020, 19, e13254.	3.0	16
4	Directed Differentiation of Notochord-like and Nucleus Pulposus-like Cells Using Human Pluripotent Stem Cells. Cell Reports, 2020, 30, 2791-2806.e5.	2.9	48
5	Expression and Activity of TRPA1 and TRPV1 in the Intervertebral Disc: Association with Inflammation and Matrix Remodeling. International Journal of Molecular Sciences, 2019, 20, 1767.	1.8	27
6	IVD progenitor cells: a new horizon for understanding disc homeostasis and repair. Nature Reviews Rheumatology, 2019, 15, 102-112.	3.5	105
7	Clinical trials of intervertebral disc regeneration: current status and future developments. International Orthopaedics, 2019, 43, 1003-1010.	0.9	23
8	Histological and reference system for the analysis of mouse intervertebral disc. Journal of Orthopaedic Research, 2018, 36, 233-243.	1.2	72
9	Lumbar intervertebral disc allograft transplantation: the revascularisation pattern. European Spine Journal, 2018, 27, 728-736.	1.0	11
10	Lumbar intervertebral disc allograft transplantation: long-term mobility and impact on the adjacent segments. European Spine Journal, 2017, 26, 799-805.	1.0	4
11	Role of SHOX2 in the development of intervertebral disc degeneration. Journal of Orthopaedic Research, 2017, 35, 1047-1057.	1.2	8
12	Small leucine-rich proteoglycans (SLRPs): characteristics and function in the intervertebral disc. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 602-608.	1.3	14
13	Bone morphogenetic protein-2 and -7 mediate the anabolic function of nucleus pulposus cells with discrete mechanisms. Connective Tissue Research, 2017, 58, 573-585.	1.1	13
14	Degenerated intervertebral discs contain increased proportion of α-smooth muscle actin positive cells. Osteoarthritis and Cartilage, 2016, 24, S481-S482.	0.6	2
15	The paradoxicalÂrelationship between ligamentum flavum hypertrophy and developmental lumbar spinal stenosis. Scoliosis and Spinal Disorders, 2016, 11, 26.	2.3	23
16	Cartilage degeneration and excessive subchondral bone formation in spontaneous osteoarthritis involves altered TGF-Î ² signaling. Journal of Orthopaedic Research, 2016, 34, 763-770.	1.2	66
17	Cell-Based Therapies for Degenerative Disc Diseases. Operative Techniques in Orthopaedics, 2016, 26, 182-188.	0.2	1
18	N-cadherin is Key to Expression of the Nucleus Pulposus Cell Phenotype under Selective Substrate Culture Conditions. Scientific Reports, 2016, 6, 28038.	1.6	46

VICTOR Y L LEUNG

#	Article	IF	CITATIONS
19	Matrix metalloproteinase 12 is an indicator of intervertebral disc degeneration co-expressed with fibrotic markers. Osteoarthritis and Cartilage, 2016, 24, 1826-1836.	0.6	39
20	Intervertebral Disc Engineering through Exploiting Mesenchymal Stem Cells: Progress and Perspective. Current Stem Cell Research and Therapy, 2016, 11, 505-512.	0.6	3
21	Lumbar intervertebral disc allograft transplantation: healing and remodelling of the bony structure. , 2016, 32, 216-227.		4
22	Systematic study of cell isolation from bovine nucleus pulposus: Improving cell yield and experiment reliability. Journal of Orthopaedic Research, 2015, 33, 1743-1755.	1.2	19
23	Enrichment of committed human nucleus pulposus cells expressing chondroitin sulfate proteoglycans under alginate encapsulation. Osteoarthritis and Cartilage, 2015, 23, 1194-1203.	0.6	20
24	Stem cells and aberrant signaling of molecular systems in skin aging. Ageing Research Reviews, 2015, 19, 8-21.	5.0	25
25	In search of nucleus pulposus-specific molecular markers. Rheumatology, 2014, 53, 600-610.	0.9	76
26	Delivering Mesenchymal Stem Cells in Collagen Microsphere Carriers to Rabbit Degenerative Disc: Reduced Risk of Osteophyte Formation. Tissue Engineering - Part A, 2014, 20, 1379-1391.	1.6	39
27	Concise Review: The Surface Markers and Identity of Human Mesenchymal Stem Cells. Stem Cells, 2014, 32, 1408-1419.	1.4	833
28	Mesenchymal Stem Cells Reduce Intervertebral Disc Fibrosis and Facilitate Repair. Stem Cells, 2014, 32, 2164-2177.	1.4	84
29	A comparison of intravenous and intradiscal delivery of multipotential stem cells on the healing of injured intervertebral disk. Journal of Orthopaedic Research, 2014, 32, 819-825.	1.2	35
30	A Systematic Review of the Safety and Efficacy of Mesenchymal Stem Cells for Disc Degeneration: Insights and Future Directions for Regenerative Therapeutics. Stem Cells and Development, 2014, 23, 2553-2567.	1.1	79
31	Correction for concentration overestimation of nucleic acids with phenol. Analytical Biochemistry, 2014, 465, 179-186.	1.1	9
32	Decellularized bovine intervertebral disc as a natural scaffold for xenogenic cell studies. Acta Biomaterialia, 2013, 9, 5262-5272.	4.1	64
33	The effects of microenvironment in mesenchymal stem cell–based regeneration of intervertebral disc. Spine Journal, 2013, 13, 352-362.	0.6	148
34	Coupling of small leucine-rich proteoglycans to hypoxic survival of a progenitor cell-like subpopulation in Rhesus Macaque intervertebral disc. Biomaterials, 2013, 34, 6548-6558.	5.7	31
35	Intrinsic Properties of Mesemchymal Stem Cells from Human Bone Marrow, Umbilical Cord and Umbilical Cord Blood Comparing the Different Sources of MSC. Current Stem Cell Research and Therapy, 2012, 7, 389-399.	0.6	41
36	Structure and Biology of the Intervertebral Disk in Health and Disease. Orthopedic Clinics of North America, 2011, 42, 447-464.	0.5	102

VICTOR Y L LEUNG

#	Article	IF	CITATIONS
37	Tissue Engineering for Intervertebral Disk Degeneration. Orthopedic Clinics of North America, 2011, 42, 575-583.	0.5	19
38	Developmental Definition of MSCs: New Insights Into Pending Questions. Cellular Reprogramming, 2011, 13, 465-472.	0.5	26
39	SOX9 Governs Differentiation Stage-Specific Gene Expression in Growth Plate Chondrocytes via Direct Concomitant Transactivation and Repression. PLoS Genetics, 2011, 7, e1002356.	1.5	174
40	The role of cryopreservation in the biomechanical properties of the intervertebral disc. , 2011, 22, 393-402.		9
41	Nanostructure of collagen fibrils in human nucleus pulposus and its correlation with macroscale tissue mechanics. Journal of Orthopaedic Research, 2010, 28, 497-502.	1.2	40
42	Cryopreserved intervertebral disc with injected bone marrow–derived stromal cells: a feasibility study using organ culture. Spine Journal, 2010, 10, 486-496.	0.6	37
43	Minimizing cryopreservation-induced loss of disc cell activity for storage of whole intervertebral discs. , 2010, 19, 273-283.		16
44	Nano-Structure of Collagen Fibrils in Human Intervertebral Discs and Its Correlation With the Tissue Mechanics. , 2010, , .		0
45	Mesenchymal Stem Cells Arrest Intervertebral Disc Degeneration Through Chondrocytic Differentiation and Stimulation of Endogenous Cells. Molecular Therapy, 2009, 17, 1959-1966.	3.7	134
46	Matrix Remodeling During Intervertebral Disc Growth and Degeneration Detected by Multichromatic FAST Staining Journal of Histochemistry and Cytochemistry, 2009, 57, 613-613.	1.3	0
47	Matrix Remodeling During Intervertebral Disc Growth and Degeneration Detected by Multichromatic FAST Staining. Journal of Histochemistry and Cytochemistry, 2009, 57, 249-256.	1.3	56
48	Injuryâ€induced sequential transformation of notochordal nucleus pulposus to chondrogenic and fibrocartilaginous phenotype in the mouse. Journal of Pathology, 2009, 218, 113-121.	2.1	109
49	Correlation Between the Nano-Structure and the Macro-Mechanics of the Human Intervertebral Discs. , 2009, , .		0
50	(ν) Molecular and cellular biology of the intervertebral disc and the use of animal models. Orthopaedics and Trauma, 2008, 22, 267-273.	0.3	16
51	Age-related degeneration of lumbar intervertebral discs in rabbits revealed by deuterium oxide-assisted MRI. Osteoarthritis and Cartilage, 2008, 16, 1312-1318.	0.6	29
52	Effect of Severity of Intervertebral Disc Injury on Mesenchymal Stem Cell-Based Regeneration. Connective Tissue Research, 2008, 49, 15-21.	1.1	69
53	Mesenchymal Stem Cell-Based Repair of Articular Cartilage with Polyglycolic Acid-Hydroxyapatite Biphasic Scaffold. International Journal of Artificial Organs, 2008, 31, 480-489.	0.7	42
54	Regeneration of intervertebral disc by mesenchymal stem cells: potentials, limitations, and future direction. European Spine Journal, 2006, 15, 406-413.	1.0	162

#	Article	IF	CITATIONS
55	Notochordal Differentiation and Integrative Transcriptomic Analysis Using Human Pluripotent Stem Cells. SSRN Electronic Journal, 0, , .	0.4	0