List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/402663/publications.pdf Version: 2024-02-01

MINIA I RISSELL

#	Article	IF	CITATIONS
1	The PI3K/mTOR inhibitor Gedatolisib eliminates dormant breast cancer cells in organotypic culture, but fails to prevent metastasis in preclinical settings. Molecular Oncology, 2022, 16, 130-147.	2.1	19
2	The role of tumor microenvironment and exosomes in dormancy and relapse. Seminars in Cancer Biology, 2022, 78, 35-44.	4.3	24
3	Astrocytic laminin-211 drives disseminated breast tumor cell dormancy in brain. Nature Cancer, 2022, 3, 25-42.	5.7	52
4	Ser71 Phosphorylation Inhibits Actin-Binding of Profilin-1 and Its Apoptosis-Sensitizing Activity. Frontiers in Cell and Developmental Biology, 2021, 9, 692269.	1.8	1
5	The not-so-sweet side of sugar: Influence of the microenvironment on the processes that unleash cancer. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165960.	1.8	2
6	Iron Supplementation Eliminates Antagonistic Interactions Between Root-Associated Bacteria. Frontiers in Microbiology, 2020, 11, 1742.	1.5	9
7	Systems-Level Properties of EGFR-RAS-ERK Signaling Amplify Local Signals to Generate Dynamic Gene Expression Heterogeneity. Cell Systems, 2020, 11, 161-175.e5.	2.9	29
8	Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers. Cell, 2020, 182, 1044-1061.e18.	13.5	691
9	Zena Werb (1945–2020). Science, 2020, 369, 1059-1059.	6.0	0
10	Alterations in Progesterone Receptor Isoform Balance in Normal and Neoplastic Breast Cells Modulates the Stem Cell Population. Cells, 2020, 9, 2074.	1.8	5
11	Zena Werb (1945–2020): Mourning the loss of a tissue microenvironment icon. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27759-27760.	3.3	0
12	Generating a Fractal Microstructure of Laminin-111 to Signal to Cells. Journal of Visualized Experiments, 2020, , .	0.2	0
13	Perturbed myoepithelial cell differentiation in BRCA mutation carriers and in ductal carcinoma in situ. Nature Communications, 2019, 10, 4182.	5.8	37
14	Rhizobacteria Mediate the Phytotoxicity of a Range of Biorefineryâ€Relevant Compounds. Environmental Toxicology and Chemistry, 2019, 38, 1911-1922.	2.2	7
15	Cancer stem cells in breast and prostate: Fact or fiction?. Advances in Cancer Research, 2019, 144, 315-341.	1.9	14
16	Modeling Host-Pathogen Interactions in the Context of the Microenvironment: Three-Dimensional Cell Culture Comes of Age. Infection and Immunity, 2018, 86, .	1.0	108
17	Transient external force induces phenotypic reversion of malignant epithelial structures via nitric oxide signaling. ELife, 2018, 7, .	2.8	30
18	Laminin signals initiate the reciprocal loop that informs breast-specific gene expression and homeostasis by activating NO, p53 and microRNAs. ELife, 2018, 7, .	2.8	45

#	Article	IF	CITATIONS
19	Fibronectin rescues estrogen receptor α from lysosomal degradation in breast cancer cells. Journal of Cell Biology, 2018, 217, 2777-2798.	2.3	30
20	hMENA isoforms impact NSCLC patient outcome through fibronectin/β1 integrin axis. Oncogene, 2018, 37, 5605-5617.	2.6	17
21	A Functionally Robust Phenotypic Screen that Identifies Drug Resistance-associated Genes Using 3D Cell Culture. Bio-protocol, 2018, 8, .	0.2	5
22	Deep nuclear invaginations linked to cytoskeletal filaments: Integrated bioimaging of epithelial cells in 3D culture. Journal of Cell Science, 2017, 130, 177-189.	1.2	64
23	<scp>FAM</scp> 83 family oncogenes are broadly involved in human cancers: an integrative multiâ€omics approach. Molecular Oncology, 2017, 11, 167-179.	2.1	102
24	Laminin-111 and the Level of Nuclear Actin Regulate Epithelial Quiescence via Exportin-6. Cell Reports, 2017, 19, 2102-2115.	2.9	68
25	Pre-metastatic niches: organ-specific homes for metastases. Nature Reviews Cancer, 2017, 17, 302-317.	12.8	1,272
26	Organoids: A historical perspective of thinking in three dimensions. Journal of Cell Biology, 2017, 216, 31-40.	2.3	442
27	Goodbye flat biology – time for the 3rd and the 4th dimensions. Journal of Cell Science, 2017, 130, 3-5.	1.2	57
28	Pathways Involved in Formation of Mammary Organoid Architecture Have Keys to Understanding Drug Resistance and to Discovery of Druggable Targets. Cold Spring Harbor Symposia on Quantitative Biology, 2016, 81, 207-217.	2.0	15
29	The pattern of hMENA isoforms is regulated by TGF-β1 in pancreatic cancer and may predict patient outcome. Oncolmmunology, 2016, 5, e1221556.	2.1	23
30	Pathways of parallel progression. Nature, 2016, 540, 528-529.	13.7	29
31	Nuclear repartitioning of galectin-1 by an extracellular glycan switch regulates mammary morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4820-7.	3.3	63
32	Thinking in three dimensions: discovering reciprocal signaling between the extracellular matrix and nucleus and the wisdom of microenvironment and tissue architecture. Molecular Biology of the Cell, 2016, 27, 3192-3196.	0.9	9
33	184AA3: a xenograft model of ER+ breast adenocarcinoma. Breast Cancer Research and Treatment, 2016, 155, 37-52.	1.1	8
34	Inhibitors of Rho kinase (ROCK) signaling revert the malignant phenotype of breast cancer cells in 3D context. Oncotarget, 2016, 7, 31602-31622.	0.8	47
35	New insight into the role of MMP14 in metabolic balance. PeerJ, 2016, 4, e2142.	0.9	21
36	Identification of genetic loci that control mammary tumor susceptibility through the host microenvironment. Scientific Reports, 2015, 5, 8919.	1.6	16

#	Article	IF	CITATIONS
37	Mammary gland development: cell fate specification, stem cells and the microenvironment. Development (Cambridge), 2015, 142, 1028-1042.	1.2	343
38	Subcellular Localization and Ser-137 Phosphorylation Regulate Tumor-suppressive Activity of Profilin-1. Journal of Biological Chemistry, 2015, 290, 9075-9086.	1.6	23
39	Mammary Branching Morphogenesis Requires Reciprocal Signaling by Heparanase and MMP-14. Journal of Cellular Biochemistry, 2015, 116, 1668-1679.	1.2	24
40	Tumour exosome integrins determine organotropic metastasis. Nature, 2015, 527, 329-335.	13.7	3,688
41	Modelling breast cancer requires identification and correction of a critical cell lineage-dependent transduction bias. Nature Communications, 2015, 6, 6927.	5.8	20
42	Asymmetric expression of connexins between luminal epithelial- and myoepithelial- cells is essential for contractile function of the mammary gland. Developmental Biology, 2015, 399, 15-26.	0.9	29
43	Network Analysis of Breast Cancer Progression and Reversal Using a Tree-Evolving Network Algorithm. PLoS Computational Biology, 2014, 10, e1003713.	1.5	9
44	Sorting Out the FACS: A Devil in the Details. Cell Reports, 2014, 6, 779-781.	2.9	76
45	Of plasticity and specificity: dialectics of the microenvironment and macroenvironment and the organ phenotype. Wiley Interdisciplinary Reviews: Developmental Biology, 2014, 3, 147-163.	5.9	76
46	The need for complex 3D culture models to unravel novel pathways and identify accurate biomarkers in breast cancer. Advanced Drug Delivery Reviews, 2014, 69-70, 42-51.	6.6	273
47	β1 and β4 integrins: from breast development to clinical practice. Breast Cancer Research, 2014, 16, 459.	2.2	57
48	SnapShot: Branching Morphogenesis. Cell, 2014, 158, 1212-1212.e1.	13.5	23
49	An interferon signature identified by RNA-sequencing of mammary tissues varies across the estrous cycle and is predictive of metastasis-free survival. Oncotarget, 2014, 5, 4011-4025.	0.8	19
50	Patterned Collagen Fibers Orient Branching Mammary Epithelium through Distinct Signaling Modules. Current Biology, 2013, 23, 703-709.	1.8	135
51	CSF1R inhibition delays cervical and mammary tumor growth in murine models by attenuating the turnover of tumor-associated macrophages and enhancing infiltration by CD8 ⁺ T cells. Oncolmmunology, 2013, 2, e26968.	2.1	311
52	NFkB disrupts tissue polarity in 3D by preventing integration of microenvironmental signals. Oncotarget, 2013, 4, 2010-2020.	0.8	42
53	Splicing program of human MENA produces a previously undescribed isoform associated with invasive, mesenchymal-like breast tumors. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19280-19285.	3.3	112
54	Coherent angular motion in the establishment of multicellular architecture of glandular tissues. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1973-1978.	3.3	184

MINA J BISSELL

#	Article	IF	CITATIONS
55	The tumor microenvironment is a dominant force in multidrug resistance. Drug Resistance Updates, 2012, 15, 39-49.	6.5	361
56	The tumor microenvironment modulates tamoxifen resistance in breast cancer: a role for soluble stromal factors and fibronectin through β1 integrin. Breast Cancer Research and Treatment, 2012, 133, 459-471.	1.1	143
57	FAM83A confers EGFR-TKI resistance in breast cancer cells and in mice. Journal of Clinical Investigation, 2012, 122, 3211-3220.	3.9	126
58	Why don't we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nature Medicine, 2011, 17, 320-329.	15.2	1,296
59	Depletion of nuclear actin is a key mediator of quiescence in epithelial cells. Journal of Cell Science, 2011, 124, 123-132.	1.2	128
60	Self-organization is a dynamic and lineage-intrinsic property of mammary epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3264-3269.	3.3	52
61	Breast Cancer Cells in Three-dimensional Culture Display an Enhanced Radioresponse after Coordinate Targeting of Integrin α5β1 and Fibronectin. Cancer Research, 2010, 70, 5238-5248.	0.4	173
62	Raf-induced MMP9 disrupts tissue architecture of human breast cells in three-dimensional culture and is necessary for tumor growth in vivo. Genes and Development, 2010, 24, 2800-2811.	2.7	91
63	Interaction of E-cadherin and PTEN Regulates Morphogenesis and Growth Arrest in Human Mammary Epithelial Cells. Cancer Research, 2009, 69, 4545-4552.	0.4	64
64	Tissue architecture and function: dynamic reciprocity via extra- and intra-cellular matrices. Cancer and Metastasis Reviews, 2009, 28, 167-176.	2.7	274
65	Extracellular matrix control of mammary gland morphogenesis and tumorigenesis: insights from imaging. Histochemistry and Cell Biology, 2008, 130, 1105-18.	0.8	142
66	Laminin and biomimetic extracellular elasticity enhance functional differentiation in mammary epithelia. EMBO Journal, 2008, 27, 2829-2838.	3.5	161
67	Regulation of In Situ to Invasive Breast Carcinoma Transition. Cancer Cell, 2008, 13, 394-406.	7.7	437
68	A Human Breast Cell Model of Preinvasive to Invasive Transition. Cancer Research, 2008, 68, 1378-1387.	0.4	145
69	β1 Integrin Inhibition Dramatically Enhances Radiotherapy Efficacy in Human Breast Cancer Xenografts. Cancer Research, 2008, 68, 4398-4405.	0.4	201
70	Reprogramming stem cells is a microenvironmental task. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15637-15638.	3.3	13
71	The MAPKERK-1,2 pathway integrates distinct and antagonistic signals from TGFα and FGF7 in morphogenesis of mouse mammary epithelium. Developmental Biology, 2007, 306, 193-207.	0.9	169
72	Three-dimensional culture models of normal and malignant breast epithelial cells. Nature Methods, 2007, 4, 359-365.	9.0	1,131

#	Article	IF	CITATIONS
73	Of Microenvironments and Mammary Stem Cells. Stem Cell Reviews and Reports, 2007, 3, 137-146.	5.6	58
74	β1 Integrin Inhibitory Antibody Induces Apoptosis of Breast Cancer Cells, Inhibits Growth, and Distinguishes Malignant from Normal Phenotype in Three Dimensional Cultures and In vivo. Cancer Research, 2006, 66, 1526-1535.	0.4	303
75	Dystroglycan loss disrupts polarity and β-casein induction in mammary epithelial cells by perturbing laminin anchoring. Journal of Cell Science, 2006, 119, 4047-4058.	1.2	90
76	Tissue Geometry Determines Sites of Mammary Branching Morphogenesis in Organotypic Cultures. Science, 2006, 314, 298-300.	6.0	545
77	Context, tissue plasticity, and cancer. Cancer Cell, 2005, 7, 17-23.	7.7	464
78	Myoepithelial cells: good fences make good neighbors. Breast Cancer Research, 2005, 7, 190-7.	2.2	210
79	Polarity and proliferation are controlled by distinct signaling pathways downstream of PI3-kinase in breast epithelial tumor cells. Journal of Cell Biology, 2004, 164, 603-612.	2.3	353
80	Extracellular Matrix: Tissue-specific Regulator of Cell Proliferation. , 2004, , 297-332.		0
81	Tissue architecture: the ultimate regulator of breast epithelial function. Current Opinion in Cell Biology, 2003, 15, 753-762.	2.6	382
82	Tumor reversion: Correction of malignant behavior by microenvironmental cues. International Journal of Cancer, 2003, 107, 688-695.	2.3	307
83	Polarity determination in breast tissue: desmosomal adhesion, myoepithelial cells, and laminin 1. Breast Cancer Research, 2003, 5, 117-9.	2.2	44
84	Phenotypic Reversion or Death of Cancer Cells by Altering Signaling Pathways in Three-Dimensional Contexts. Journal of the National Cancer Institute, 2002, 94, 1494-1503.	3.0	392
85	β4 integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium. Cancer Cell, 2002, 2, 205-216.	7.7	880
86	The organizing principle: microenvironmental influences in the normal and malignant breast. Differentiation, 2002, 70, 537-546.	1.0	542
87	Normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for polarity and basement membrane deposition. Journal of Cell Science, 2002, 115, 39-50.	1.2	409
88	Normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for polarity and basement membrane deposition. Journal of Cell Science, 2002, 115, 39-50.	1.2	348
89	A role for dystroglycan in epithelial polarization: loss of function in breast tumor cells. Cancer Research, 2002, 62, 7102-9.	0.4	125
90	Trichostatin a inhibits ?-casein expression in mammary epithelial cells. Journal of Cellular Biochemistry, 2001, 83, 660-670.	1.2	23

#	Article	IF	CITATIONS
91	Putting tumours in context. Nature Reviews Cancer, 2001, 1, 46-54.	12.8	1,892
92	Quantitative Model-Based Image Analysis of NuMa Distribution Links Nuclear Organization with Cell Phenotype. Microscopy and Microanalysis, 2001, 7, 578-579.	0.2	0
93	The matrix metalloproteinase stromelysin-1 acts as a natural mammary tumor promoter. Oncogene, 2000, 19, 1102-1113.	2.6	244
94	AZU-1: A Candidate Breast Tumor Suppressor and Biomarker for Tumor Progression. Molecular Biology of the Cell, 2000, 11, 1357-1367.	0.9	84
95	Division of Labor among the α6β4 Integrin, β1 Integrins, and an E3 Laminin Receptor to Signal Morphogenesis and β-Casein Expression in Mammary Epithelial Cells. Molecular Biology of the Cell, 1999, 10, 2817-2828.	0.9	114
96	An odyssey from breast to bone: Multiâ€ s tep control of mammary metastases and osteolysis by matrix metalloproteinases. Apmis, 1999, 107, 128-136.	0.9	78
97	Glandular Structure and Gene Expression: Lessons from the Mammary Glanda. Annals of the New York Academy of Sciences, 1998, 842, 1-6.	1.8	15
98	The Significance of Matrix Metalloproteinases during Early Stages of Tumor Progressiona. Annals of the New York Academy of Sciences, 1998, 857, 180-193.	1.8	121
99	Communication between the cell membrane and the nucleus: Role of protein compartmentalization. , 1998, 72, 250-263.		23
100	Tissue architecture: the ultimate regulator of epithelial function?. Philosophical Transactions of the Royal Society B: Biological Sciences, 1998, 353, 857-870.	1.8	124
101	Differentiation and Cancer in the Mammary Gland: Shedding Light on an Old Dichotomy. Advances in Cancer Research, 1998, 75, 135-162.	1.9	63
102	Characterization of BCE-1, a Transcriptional Enhancer Regulated by Prolactin and Extracellular Matrix and Modulated by the State of Histone Acetylation. Molecular and Cellular Biology, 1998, 18, 2184-2195.	1.1	111
103	From laminin to lamin: regulation of tissue-specific gene expression by the ECM. Trends in Cell Biology, 1995, 5, 1-4.	3.6	157
104	The Microenvironment of the Breast: Three-Dimensional Models to Study the Roles of the Stroma and the Extracellular Matrix in Function and Dysfunction. Breast Journal, 1995, 1, 22-35.	0.4	12
105	Regulation of gene expression by extracellular matrix. Stem Cells, 1995, 13, 86-87.	1.4	0
106	Transcriptlonal activation by viral enhancers: Critical dependence on extracellular matrix-cell interactions in mammary epithelial cells. Molecular Carcinogenesis, 1994, 10, 66-71.	1.3	21
107	How does the extracellular matrix direct gene expression?. Journal of Theoretical Biology, 1982, 99, 31-68.	0.8	1,387
108	The Differentiated State of Normal and Malignant Cells or How to Define a "Normal―Cell in Culture. International Review of Cytology, 1981, 70, 27-100.	6.2	194

#	Article	IF	CITATIONS
109	Culturing Mammary Stem Cells. , 0, , 281-302.		Ο