Qiang-Sheng Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4026373/publications.pdf

Version: 2024-02-01

168 5,682 37 66
papers citations h-index g-index

173 173 2997
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Arbuscular mycorrhizal fungi mitigate drought stress in citrus by modulating root microenvironment. Archives of Agronomy and Soil Science, 2022, 68, 1217-1228.	1.3	40
2	Genome-wide identification of citrus calmodulin-like genes and their expression in response to arbuscular mycorrhizal fungi colonization and drought. Canadian Journal of Plant Science, 2022, 102, 112-123.	0.3	2
3	Mycorrhizal fungi regulate daily rhythm of circadian clock in trifoliate orange under drought stress. Tree Physiology, 2022, 42, 616-628.	1.4	15
4	Effects of field inoculation with arbuscular mycorrhizal fungi and endophytic fungi on fruit quality and soil properties of Newhall navel orange. Applied Soil Ecology, 2022, 170, 104308.	2.1	31
5	Earthworm (Pheretima guillelmi)-mycorrhizal fungi (Funneliformis mosseae) association mediates rhizosphere responses in white clover. Applied Soil Ecology, 2022, 172, 104371.	2.1	9
6	Mycorrhiza improves plant growth and photosynthetic characteristics of tea plants in response to drought stress. Biocell, 2022, 46, 1339-1346.	0.4	6
7	Mycorrhiza improves cold tolerance of Satsuma orange by inducing antioxidant enzyme gene expression. Biocell, 2022, 46, 1959-1966.	0.4	6
8	The Comprehensive Effects of Rhizophagus intraradices and P on Root System Architecture and P Transportation in Citrus limon L Agriculture (Switzerland), 2022, 12, 317.	1.4	8
9	Root Endophytic Fungi Regulate Changes in Sugar and Medicinal Compositions of Polygonum cuspidatum. Frontiers in Plant Science, 2022, 13, 818909.	1.7	15
10	Arbuscular Mycorrhizal Fungi and Endophytic Fungi Activate Leaf Antioxidant Defense System of Lane Late Navel Orange. Journal of Fungi (Basel, Switzerland), 2022, 8, 282.	1.5	17
11	Effect of <i>Rhizoglomus fasciculatum</i> and <i>Paecilomyces lilacinus</i> in the biocontrol of root-knot nematode, <i>Meloidogyne incognita</i> in <i>Capsicum annuum</i> L. Communicative and Integrative Biology, 2022, 15, 75-87.	0.6	6
12	Endophytic Fungi Accelerate Leaf Physiological Activity and Resveratrol Accumulation in Polygonum cuspidatum by Up-Regulating Expression of Associated Genes. Agronomy, 2022, 12, 1220.	1.3	11
13	Multi-Omics and Integrative Approach towards Understanding Salinity Tolerance in Rice: A Review. Biology, 2022, 11, 1022.	1.3	14
14	Elucidating the dialogue between arbuscular mycorrhizal fungi and polyamines in plants. World Journal of Microbiology and Biotechnology, 2022, 38, .	1.7	13
15	Introduction of earthworms into mycorrhizosphere of white clover facilitates N storage in glomalin-related soil protein and contribution to soil total N. Applied Soil Ecology, 2022, 179, 104597.	2.1	9
16	Effects of beneficial endophytic fungal inoculants on plant growth and nutrient absorption of trifoliate orange seedlings. Scientia Horticulturae, 2021, 277, 109815.	1.7	67
17	Unravelling the role of arbuscular mycorrhizal fungi in mitigating the oxidative burst of plants under drought stress. Plant Biology, 2021, 23, 50-57.	1.8	120
18	Mycorrhizas promote P acquisition of tea plants through changes in root morphology and P transporter gene expression. South African Journal of Botany, 2021, 137, 455-462.	1.2	33

#	Article	IF	Citations
19	Effects of Rhizophagus intraradices and Rhizobium trifolii on growth and N assimilation of white clover. Plant Growth Regulation, 2021, 93, 311-318.	1.8	17
20	Interaction between Earthworms and Arbuscular Mycorrhizal Fungi in Plants: A Review. Phyton, 2021, 90, 687-699.	0.4	7
21	Identification of PtGai (a DELLA protein) in trifoliate orange and expression patterns in response to drought stress. Biocell, 2021, 45, 1687-1694.	0.4	3
22	Integrated Soil Fertility Management in Fruit Crops: An Overview. International Journal of Fruit Science, 2021, 21, 413-439.	1.2	17
23	Genome-wide identification of citrus histone acetyltransferase and deacetylase families and their expression in response to arbuscular mycorrhizal fungi and drought. Journal of Plant Interactions, 2021, 16, 367-376.	1.0	8
24	Mycorrhiza-induced plant defence responses in trifoliate orange infected by Phytophthora parasitica. Acta Physiologiae Plantarum, 2021, 43, 1.	1.0	13
25	Physiological responses of mycorrhizal symbiosis to drought stress in white clover. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2021, 49, 12209.	0.5	8
26	Arbuscular Mycorrhizal Fungi Alleviate Drought Stress in Trifoliate Orange by Regulating H+-ATPase Activity and Gene Expression. Frontiers in Plant Science, 2021, 12, 659694.	1.7	48
27	Exploring arbuscular mycorrhizal symbiosis in wetland plants with a focus on human impacts. Symbiosis, 2021, 84, 311-320.	1.2	10
28	Mycorrhizal Fungal Diversity and Its Relationship with Soil Properties in Camellia oleifera. Agriculture (Switzerland), 2021, 11, 470.	1.4	15
29	Mycorrhizal response strategies of trifoliate orange under well-watered, salt stress, and waterlogging stress by regulating leaf aquaporin expression. Plant Physiology and Biochemistry, 2021, 162, 27-35.	2.8	34
30	Exploring mycorrhizal fungi in walnut with a focus on physiological roles. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2021, 49, 12363.	0.5	8
31	Spatial changes of arbuscular mycorrhizal fungi in peach and their correlation with soil properties. Saudi Journal of Biological Sciences, 2021, 28, 6495-6499.	1.8	5
32	The Change in Fatty Acids and Sugars Reveals the Association between Trifoliate Orange and Endophytic Fungi. Journal of Fungi (Basel, Switzerland), 2021, 7, 716.	1.5	12
33	Easily Extractable Glomalin-Related Soil Protein as Foliar Spray Improves Nutritional Qualities of Late Ripening Sweet Oranges. Horticulturae, 2021, 7, 228.	1.2	7
34	A review of the interaction of medicinal plants and arbuscular mycorrhizal fungi in the rhizosphere. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2021, 49, 12454.	0.5	12
35	Unraveling the Interaction between Arbuscular Mycorrhizal Fungi and Camellia Plants. Horticulturae, 2021, 7, 322.	1.2	8
36	Exogenous Glomalin-Related Soil Proteins Differentially Regulate Soil Properties in Trifoliate Orange. Agronomy, 2021, 11, 1896.	1.3	6

#	Article	IF	Citations
37	Differential Effects of Exogenous Glomalin-Related Soil Proteins on Plant Growth of Trifoliate Orange Through Regulating Auxin Changes. Frontiers in Plant Science, 2021, 12, 745402.	1.7	14
38	Inoculation with Clariodeoglomus etunicatum improves leaf food quality of tea exposed to P stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2021, 49, 12166.	0.5	6
39	Metabolomics Analysis Reveals Drought Responses of Trifoliate Orange by Arbuscular Mycorrhizal Fungi With a Focus on Terpenoid Profile. Frontiers in Plant Science, 2021, 12, 740524.	1.7	19
40	Effects of AMF on nutrient and stoichiometric characteristics in different organs of sunflower. International Journal of Current Research in Biosciences and Plant Biology, 2021, 8, 1-9.	0.1	0
41	Transcriptomic Analysis of Late-Ripening Sweet Orange Fruits (Citrus sinensis) after Foliar Application of Glomalin-Related Soil Proteins. Agriculture (Switzerland), 2021, 11, 1171.	1.4	1
42	Field Inoculation of Arbuscular Mycorrhizal Fungi Improves Fruit Quality and Root Physiological Activity of Citrus. Agriculture (Switzerland), 2021, 11, 1297.	1.4	14
43	Elucidating the Mechanisms Underlying Enhanced Drought Tolerance in Plants Mediated by Arbuscular Mycorrhizal Fungi. Frontiers in Microbiology, 2021, 12, 809473.	1.5	43
44	Effects of mycorrhizas on physiological performance and root <i>TIPs</i> expression in trifoliate orange under salt stress. Archives of Agronomy and Soil Science, 2020, 66, 182-192.	1.3	14
45	Arbuscular mycorrhizas modulate root polyamine metabolism to enhance drought tolerance of trifoliate orange. Environmental and Experimental Botany, 2020, 171, 103926.	2.0	101
46	Mycorrhizas enhance drought tolerance of trifoliate orange by enhancing activities and gene expression of antioxidant enzymes. Scientia Horticulturae, 2020, 262, 108745.	1.7	76
47	Genome-wide identification and expression analysis of the citrus calcium-dependent protein kinase (CDPK) genes in response to arbuscular mycorrhizal fungi colonization and drought. Biotechnology and Biotechnological Equipment, 2020, 34, 1304-1314.	0.5	9
48	Mycorrhizal fungi enhance flooding tolerance of peach through inducing proline accumulation and improving root architecture. Plant, Soil and Environment, 2020, 66, 624-631.	1.0	20
49	Genome-wide identification and expression analysis of the Citrus malectin domain-containing receptor-like kinases in response to arbuscular mycorrhizal fungi colonization and drought. Horticulture Environment and Biotechnology, 2020, 61, 891-901.	0.7	7
50	Identification and characterization of a circadian clock-associated pseudo-response regulator 7 gene from trifoliate orange. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2020, 48, 128-139.	0.5	0
51	Transcriptome analysis reveals improved root hair growth in trifoliate orange seedlings by arbuscular mycorrhizal fungi. Plant Growth Regulation, 2020, 92, 195-203.	1.8	11
52	Mycorrhiza-released glomalin-related soil protein fractions contribute to soil total nitrogen in trifoliate orange. Plant, Soil and Environment, 2020, 66, 183-189.	1.0	32
53	Single or dual inoculation of arbuscular mycorrhizal fungi and rhizobia regulates plant growth and nitrogen acquisition in white clover. Plant, Soil and Environment, 2020, 66, 287-294.	1.0	28
54	Mycorrhizal roles in plant growth, gas exchange, root morphology, and nutrient uptake of walnuts. Plant, Soil and Environment, 2020, 66, 295-302.	1.0	34

#	Article	IF	CITATIONS
55	Molecular responses of arbuscular mycorrhizal fungi in tolerating root rot of trifoliate orange. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2020, 48, 558-571.	0.5	4
56	Effects of Mycorrhizae on Physiological Responses and Relevant Gene Expression of Peach Affected by Replant Disease. Agronomy, 2020, 10, 186.	1.3	10
57	Mycorrhizosphere of fruit crops: Nature and properties. , 2020, , 325-338.		0
58	Contribution of glomalin-related soil proteins to soil organic carbon in trifoliate orange. Applied Soil Ecology, 2020, 154, 103592.	2.1	61
59	Piriformospora indica: a root endophytic fungus and its roles in plants. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2020, 48, 1-13.	0.5	24
60	Arbuscular Mycorrhizal Fungi Regulate Polyamine Homeostasis in Roots of Trifoliate Orange for Improved Adaptation to Soil Moisture Deficit Stress. Frontiers in Plant Science, 2020, 11, 600792.	1.7	42
61	A friendly-environmental strategy: application of arbuscular mycorrhizal fungi to ornamental plants for plant growth and garden landscape. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2020, 48, 1100-1115.	0.5	7
62	Arbuscular mycorrhizal fungi improve the antioxidant capacity of tea (Camellia sinensis) seedlings under drought stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2020, 48, 1993-2005.	0.5	15
63	Effects of five mycorrhizal fungi on biomass and leaf physiological activities of walnut. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2020, 48, 2021-2031.	0.5	4
64	Mycorrhizas induce diverse responses of root TIP aquaporin gene expression to drought stress in trifoliate orange. Scientia Horticulturae, 2019, 243, 64-69.	1.7	93
65	Mycorrhizae and Tolerance of Abiotic Stress in Citrus Plants. Soil Biology, 2019, , 465-487.	0.6	5
66	Salinity: An Overview. Soil Biology, 2019, , 3-18.	0.6	24
67	Mycorrhizal symbiosis down-regulates or does not change root aquaporin expression in trifoliate orange under drought stress. Plant Physiology and Biochemistry, 2019, 144, 292-299.	2.8	35
68	Arbuscular Mycorrhiza Improves Leaf Food Quality of Tea Plants. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2019, 47, .	0.5	8
69	Mycorrhizas Mitigate Soil Replant Disease of Peach Through Regulating Root Exudates, Soil Microbial Population, and Soil Aggregate Stability. Communications in Soil Science and Plant Analysis, 2019, 50, 909-921.	0.6	32
70	Effect of arbuscular mycorrhizal fungi on rhizosphere organic acid content and microbial activity of trifoliate orange under different low P conditions. Archives of Agronomy and Soil Science, 2019, 65, 2029-2042.	1.3	12
71	Mycorrhizas enhance drought tolerance of citrus by altering root fatty acid compositions and their saturation levels. Tree Physiology, 2019, 39, 1149-1158.	1.4	91
72	Mycorrhiza Regulates Signal Substance Levels and Pathogen Defense Gene Expression to Resist Citrus Canker. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2019, 47, 1161-1167.	0.5	7

#	Article	IF	Citations
73	Effects of mycorrhizal fungi on root-hair growth and hormone levels of taproot and lateral roots in trifoliate orange under drought stress. Archives of Agronomy and Soil Science, 2019, 65, 1316-1330.	1.3	67
74	Common mycorrhizal networks activate salicylic acid defense responses of trifoliate orange (<i>Poncirus trifoliata</i>). Journal of Integrative Plant Biology, 2019, 61, 1099-1111.	4.1	29
75	Functions and Application of Glomalin-Related Soil Proteins: A Review. Sains Malaysiana, 2019, 48, 111-119.	0.3	41
76	Relationships between mycorrhizas and root hairs. Pakistan Journal of Botany, 2019, 51, .	0.2	9
77	Effects of Arbuscular Mycorrhizal Fungi and Rhizobia on Physiological Activities in White Clover (Trifolium repens). Biotechnology, 2019, 18, 49-54.	0.5	6
78	Mycorrhiza stimulates root-hair growth and IAA synthesis and transport in trifoliate orange under drought stress. Scientific Reports, 2018, 8, 1978.	1.6	85
79	Exogenous easily extractable glomalin-related soil protein improves drought tolerance of trifoliate orange. Archives of Agronomy and Soil Science, 2018, 64, 1341-1350.	1.3	39
80	Relationship Between Arbuscular Mycorrhizas and Plant Growth: Improvement or Depression?. Soil Biology, 2018, , 451-464.	0.6	10
81	Root Hair Growth and Development in Response to Nutrients and Phytohormones. Soil Biology, 2018, , 65-84.	0.6	9
82	Auxin modulates root-hair growth through its signaling pathway in citrus. Scientia Horticulturae, 2018, 236, 73-78.	1.7	18
83	Mycorrhiza-induced change in root hair growth is associated with IAA accumulation and expression of EXPs in trifoliate orange under two P levels. Scientia Horticulturae, 2018, 234, 227-235.	1.7	23
84	Quantitative estimation of water uptake by mycorrhizal extraradical hyphae in citrus under drought stress. Scientia Horticulturae, 2018, 229, 132-136.	1.7	85
85	Mitigation of replant disease by mycorrhization in horticultural plants: A review. Folia Horticulturae, 2018, 30, 269-282.	0.6	17
86	A Negative Feedback Regulation of Replanted Soil Microorganisms on Plant Growth and Soil Properties of Peach. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2018, 47, 255-261.	0.5	5
87	Plant Root Hair Growth in Response to Hormones. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2018, 47, 278-281.	0.5	5
88	Mycorrhiza-induced changes in root growth and nutrient absorption of tea plants. Plant, Soil and Environment, 2018, 64, 283-289.	1.0	54
89	Exogenous Carbon Magnifies Mycorrhizal Effects on Growth Behaviour and Sucrose Metabolism in Trifoliate Orange. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2018, 46, 365-370.	0.5	3
90	Responses of Four Citrus Plants to Phytophthora-Induced Root Rot. Sains Malaysiana, 2018, 47, 1693-1700.	0.3	2

#	Article	IF	CITATIONS
91	COMMON MYCELIUM NETWORKS WITH Paraglomus occultum INDUCE BETTER PLANT GROWTH AND SIGNAL SUBSTANCE CHANGES BETWEEN TRIFOLIATE ORANGE SEEDLINGS. Acta Scientiarum Polonorum, Hortorum Cultus, 2018, 17, 95-104.	0.3	2
92	Effects of Mycorrhiza and Drought Stress on the Diversity of Fungal Community in Soils and Roots of Trifoliate Orange. Biotechnology, 2018, 18, 32-41.	0.5	11
93	Effects of Indigenous and Exotic Rhizoglomus intraradices Strains on Trifoliate Orange Seedlings. Biotechnology, 2018, 18, 42-48.	0.5	2
94	Responses of phytohormones and gas exchange to mycorrhizal colonization in trifoliate orange subjected to drought stress. Archives of Agronomy and Soil Science, 2017, 63, 14-23.	1.3	20
95	Alleviation of drought stress by mycorrhizas is related to increased root H2O2 efflux in trifoliate orange. Scientific Reports, 2017, 7, 42335.	1.6	76
96	Mycorrhizal trifoliate orange has greater root adaptation of morphology and phytohormones in response to drought stress. Scientific Reports, 2017, 7, 41134.	1.6	72
97	Mycorrhizas alter sucrose and proline metabolism in trifoliate orange exposed to drought stress. Scientific Reports, 2017, 7, 42389.	1.6	101
98	Arbuscular Mycorrhizal Fungi and Tolerance of Fe Stress in Plants. , 2017, , 131-145.		3
99	Arbuscular Mycorrhizal Fungi and Tolerance of Waterlogging Stress in Plants. , 2017, , 43-66.		6
100	Arbuscular Mycorrhizal Fungi and Adaption of P Stress in Plants., 2017,, 99-130.		1
101	Arbuscular Mycorrhizal Fungi and Tolerance of Drought Stress in Plants. , 2017, , 25-41.		43
102	Underground communication of root hormones by common mycorrhizal network between trifoliate orange and white clover. Archives of Agronomy and Soil Science, 2017, 63, 1187-1197.	1.3	3
103	Arbuscular mycorrhizas improve plant growth and soil structure in trifoliate orange under salt stress. Archives of Agronomy and Soil Science, 2017, 63, 491-500.	1.3	44
104	Enhancement of Drought Tolerance in Trifoliate Orange by Mycorrhiza: Changes in Root Sucrose and Proline Metabolisms. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2017, 46, 270-276.	0.5	39
105	Mycorrhizal Fungi Regulate Root Responses and Leaf Physiological Activities in Trifoliate Orange. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2017, 45, 17-21.	0.5	11
106	Mycorrhiza and Common Mycorrhizal Network Regulate the Production of Signal Substances in Trifoliate Orange (Poncirus trifoliata). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2017, 45, 43-49.	0.5	5
107	Nitric Oxide Accelerates Mycorrhizal Effects on Plant Growth and Root Development of Trifoliate Orange. Sains Malaysiana, 2017, 46, 1687-1691.	0.3	8
108	Systematicness of glomalin in roots and mycorrhizosphere of a split-root trifoliate orange. Plant, Soil and Environment, 2016, 62, 508-514.	1.0	7

#	Article	IF	Citations
109	Exogenous Phytohormones Modulate Mycorrhiza-Induced Changes in Root Hair Configuration of Trifoliate Orange. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2016, 44, 548-556.	0.5	7
110	Effects of combined inoculation with Rhizophagus intraradices and Paenibacillus mucilaginosus on plant growth, root morphology, and physiological status of trifoliate orange (Poncirus trifoliata L.) Tj ETQq0 0 C) rgB∏7 Ove	rlock#10 Tf 50
111	Changes in rhizosphere properties of trifoliate orange in response to mycorrhization and sod culture. Applied Soil Ecology, 2016, 107, 307-312.	2.1	13
112	Mycorrhizal hyphal disruption induces changes in plant growth, glomalin-related soil protein and soil aggregation of trifoliate orange in a core system. Soil and Tillage Research, 2016, 160, 82-91.	2.6	21
113	Mycorrhiza alters the profile of root hairs in trifoliate orange. Mycorrhiza, 2016, 26, 237-247.	1.3	65
114	Mycorrhizas Promote Plant Growth, Root Morphology and Chlorophyll Production in White Clover. Biotechnology, 2016, 16, 34-39.	0.5	10
115	Responses of Plant Growth, Root Morphology, Chlorophyll and Indoleacetic Acid to Phosphorus Stress in Trifoliate Orange. Biotechnology, 2016, 16, 40-44.	0.5	5
116	Common Mycelium Network of Mycorrhizas Alters Plant Biomass and Soil Properties between Trifoliate Orange Seedlings. Emirates Journal of Food and Agriculture, 2016, 28, 257.	1.0	1
117	Mycorrhizal function on soil aggregate stability in root zone and root-free hyphae zone of trifoliate orange. Archives of Agronomy and Soil Science, 2015, 61, 813-825.	1.3	21
118	Mycorrhiza-induced lower oxidative burst is related with higher antioxidant enzyme activities, net H2O2 effluxes, and Ca2+ influxes in trifoliate orange roots under drought stress. Mycorrhiza, 2015, 25, 143-152.	1.3	60
119	Plant growth and tissue sucrose metabolism in the system of trifoliate orange and arbuscular mycorrhizal fungi. Scientia Horticulturae, 2015, 181, 189-193.	1.7	28
120	Effects of Mycorrhizal Symbiosis on Growth Behavior and Carbohydrate Metabolism of Trifoliate Orange Under Different Substrate P Levels. Journal of Plant Growth Regulation, 2015, 34, 499-508.	2.8	34
121	Disruption of mycorrhizal extraradical mycelium and changes in leaf water status and soil aggregate stability in rootbox-grown trifoliate orange. Frontiers in Microbiology, 2015, 6, 203.	1.5	38
122	Alleviation of waterlogged stress in peach seedlings inoculated with Funneliformis mosseae: Changes in chlorophyll and proline metabolism. Scientia Horticulturae, 2015, 197, 130-134.	1.7	35
123	Arbuscular mycorrhiza mediates glomalin-related soil protein production and soil enzyme activities in the rhizosphere of trifoliate orange grown under different P levels. Mycorrhiza, 2015, 25, 121-130.	1.3	121
124	Effects of Common Mycorrhizal Network on Plant Carbohydrates and Soil Properties in Trifoliate Orange–White Clover Association. PLoS ONE, 2015, 10, e0142371.	1.1	16
125	Alleviation of Mycorrhiza to Magnesium Deficiency in Trifoliate Orange: Changes in Physiological Activity. Emirates Journal of Food and Agriculture, 2015, 27, 763.	1.0	10
126	Calcium and Calmodulin Involve in Mycorrhizal and Root Development in Trifoliate Orange Colonized by <i>Rhizophagus intraradices</i> . Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2014, 42, 380-385.	0.5	4

#	Article	IF	Citations
127	Mycorrhizal-induced calmodulin mediated changes in antioxidant enzymes and growth response of drought-stressed trifoliate orange. Frontiers in Microbiology, 2014, 5, 682.	1.5	54
128	Mycorrhizal Association and ROS in Plants. , 2014, , 453-475.		47
129	Glomalin-related soil protein and water relations in mycorrhizal citrus (<i>Citrus tangerina</i>) during soil water deficit. Archives of Agronomy and Soil Science, 2014, 60, 1103-1114.	1.3	47
130	The effect of mycorrhizal inoculation on the rhizosphere properties of trifoliate orange (Poncirus) Tj ETQq0 0 0 r	gBT <u>/</u> Overl	ock 10 Tf 50 (
131	Direct and indirect effects of glomalin, mycorrhizal hyphae and roots on aggregate stability in rhizosphere of trifoliate orange. Scientific Reports, 2014, 4, 5823.	1.6	151
132	Role of AM Fungi in Alleviating Drought Stress in Plants. , 2014, , 55-75.		13
133	Integrated effect of arbuscular mycorrhizal fungi and hydrogen peroxide on the root system of trifoliate orange seedlings. ScienceAsia, 2014, 40, 106.	0.2	1
134	Arbuscular mycorrhizal fungi induce sucrose cleavage for carbon supply of arbuscular mycorrhizas in citrus genotypes. Scientia Horticulturae, 2013, 160, 320-325.	1.7	21
135	AMF-induced tolerance to drought stress in citrus: A review. Scientia Horticulturae, 2013, 164, 77-87.	1.7	248
136	The arbuscular mycorrhizal fungus Diversispora spurca ameliorates effects of waterlogging on growth, root system architecture and antioxidant enzyme activities of citrus seedlings. Fungal Ecology, 2013, 6, 37-43.	0.7	63
137	Mycorrhizal symbiosis enhances tolerance to NaCl stress through selective absorption but not selective transport of K+ over Na+ in trifoliate orange. Scientia Horticulturae, 2013, 160, 366-374.	1.7	24
138	Increased Tolerance of Citrus (<i>Citrus tangerina</i>) Seedlings to Soil Water Deficit after Mycorrhizal Inoculation: Changes in Antioxidant Enzyme Defense System. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2013, 41, 524.	0.5	9
139	Mycorrhizal-Mediated Lower Proline Accumulation in Poncirus trifoliata under Water Deficit Derives from the Integration of Inhibition of Proline Synthesis with Increase of Proline Degradation. PLoS ONE, 2013, 8, e80568.	1.1	55
140	Arbuscular mycorrhizas alter root system architecture of Citrus tangerine through regulating metabolism of endogenous polyamines. Plant Growth Regulation, 2012, 68, 27-35.	1.8	90
141	Overexpression of AtbZIP60deltaC Gene Alleviates Salt-induced Oxidative Damage in Transgenic Cell Cultures. Plant Molecular Biology Reporter, 2012, 30, 1183-1195.	1.0	19
142	Rhizosphere Microbial Communities: Isolation, Characterization, and Value Addition for Substrate Development., 2012,, 169-194.		18
143	Interacted Effect of Arbuscular Mycorrhizal Fungi and Polyamines on Root System Architecture of Citrus Seedlings. Journal of Integrative Agriculture, 2012, 11, 1675-1681.	1.7	19
144	Effects of Exogenous Putrescine on Mycorrhiza, Root System Architecture, and Physiological Traits of Glomus mosseae-Colonized Trifoliate Orange Seedlings. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2012, 40, 80.	0.5	13

#	Article	IF	CITATIONS
145	Spatial distribution of glomalin-related soil protein and its relationships with root mycorrhization, soil aggregates, carbohydrates, activity of protease and \hat{l}^2 -glucosidase in the rhizosphere of Citrus unshiu. Soil Biology and Biochemistry, 2012, 45, 181-183.	4.2	77
146	Arbuscular Mycorrhizal Fungi and Acclimatization of Micropropagated Citrus. Communications in Soil Science and Plant Analysis, 2011, 42, 1825-1832.	0.6	20
147	Differences of hyphal and soil phosphatase activities in drought-stressed mycorrhizal trifoliate orange (Poncirus trifoliata) seedlings. Scientia Horticulturae, 2011, 129, 294-298.	1.7	55
148	Improvement of Root System Architecture in Peach (Prunus persica) Seedlings by Arbuscular Mycorrhizal Fungi, Related to Allocation of Glucose/Sucrose to Root. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2011, 39, 232.	0.5	23
149	Sodium Chloride Stress Induced Changes in Leaf Osmotic Adjustment of Trifoliate Orange (Poncirus) Tj ETQq1 1 (Cluj-Napoca, 2011, 39, 64.	0.784314 0.5	rgBT /Overlo
150	Mycorrhizal efficacy of trifoliate orange seedlings on alleviating temperature stress. Plant, Soil and Environment, 2011, 57, 459-464.	1.0	20
151	Arbuscular mycorrhizal development, glomalinâ€related soil protein (GRSP) content, and rhizospheric phosphatase activitiy in citrus orchards under different types of soil management. Journal of Plant Nutrition and Soil Science, 2011, 174, 65-72.	1.1	29
152	Arbuscular mycorrhizal fungi can alter some root characters and physiological status in trifoliate orange (Poncirus trifoliata L. Raf.) seedlings. Plant Growth Regulation, 2011, 65, 273-278.	1.8	51
153	Contributions of arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of citrus seedlings under salt stress. Acta Physiologiae Plantarum, 2010, 32, 297-304.	1.0	194
154	Beneficial roles of arbuscular mycorrhizas in citrus seedlings at temperature stress. Scientia Horticulturae, 2010, 125, 289-293.	1.7	78
155	Title is missing!. ScienceAsia, 2010, 36, 254.	0.2	24
156	Mycorrhiza has a direct effect on reactive oxygen metabolism of drought-stressed citrus. Plant, Soil and Environment, 2009, 55, 436-442.	1.0	58
157	Title is missing!. ScienceAsia, 2009, 35, 388.	0.2	17
158	Improved soil structure and citrus growth after inoculation with three arbuscular mycorrhizal fungi under drought stress. European Journal of Soil Biology, 2008, 44, 122-128.	1.4	228
159	Arbuscular mycorrhizal fungi alleviate iron deficient chlorosis in <i>Poncirus trifoliata</i> L. Raf under calcium bicarbonate stress. Journal of Horticultural Science and Biotechnology, 2007, 82, 776-780.	0.9	18
160	Reduced leaf photosynthesis at midday in citrus leaves growing under field or screenhouse conditions. Journal of Horticultural Science and Biotechnology, 2007, 82, 387-392.	0.9	12
161	Effect of Glomus versiforme inoculation on reactive oxygen metabolism of Citrus tangerine leaves exposed to water stress. Frontiers of Agriculture in China, 2007, 1, 438-443.	0.2	4
162	Osmotic solute responses of mycorrhizal citrus (Poncirus trifoliata) seedlings to drought stress. Acta Physiologiae Plantarum, 2007, 29, 543-549.	1.0	56

#	Article	IF	CITATIONS
163	Effects ofÂwater stress andÂarbuscular mycorrhizal fungi onÂreactive oxygen metabolism andÂantioxidant production byÂcitrus (CitrusÂtangerine) roots. European Journal of Soil Biology, 2006, 42, 166-172.	1.4	110
164	Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. Journal of Plant Physiology, 2006, 163, 417-425.	1.6	418
165	Reactive oxygen metabolism in mycorrhizal and non-mycorrhizal citrus (Poncirus trifoliata) seedlings subjected to water stress. Journal of Plant Physiology, 2006, 163, 1101-1110.	1.6	164
166	Effect of Arbuscular Mycorrhiza on the Drought Tolerance of Poncirus trifoliata Seedlings. Frontiers of Forestry in China: Selected Publications From Chinese Universities, 2006, 1, 100-104.	0.2	27
167	Effects of arbuscular mycorrhizal fungi on leaf solutes and root absorption areas of trifoliate orange seedlings under water stress conditions. Frontiers of Forestry in China: Selected Publications From Chinese Universities, 2006, 1, 312-317.	0.2	21
168	Potential Roles of Phytochemicals in Combating Severe Acute Respiratory Syndrome Coronavirus Infection. Plant Science Today, 0, , .	0.4	0