
Alexa H Veenema

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4025633/publications.pdf Version: 2024-02-01

Διέχλ Η Veenema

#	Article	IF	CITATIONS
1	The social versus food preference test: A behavioral paradigm for studying competing motivated behaviors in rodents. MethodsX, 2020, 7, 101119.	0.7	8
2	Involvement of orexin/hypocretin in the expression of social play behaviour in juvenile rats. International Journal of Play, 2020, 9, 108-127.	0.3	8
3	Oestrogen and androgen receptor activation contribute to the masculinisation of oxytocin receptors in the bed nucleus of the stria terminalis of rats. Journal of Neuroendocrinology, 2019, 31, e12760.	1.2	5
4	Comparing vasopressin and oxytocin fiber and receptor density patterns in the social behavior neural network: Implications for cross-system signaling. Frontiers in Neuroendocrinology, 2019, 53, 100737.	2.5	26
5	Sex differences in the regulation of social and anxiety-related behaviors: insights from vasopressin and oxytocin brain systems. Current Opinion in Neurobiology, 2018, 49, 132-140.	2.0	110
6	Activation patterns of vasopressinergic and oxytocinergic brain regions following social play exposure in juvenile male and female rats. Journal of Neuroendocrinology, 2018, 30, e12582.	1.2	23
7	Nucleus accumbens mu opioid receptors regulate context-specific social preferences in the juvenile rat. Psychoneuroendocrinology, 2018, 89, 59-68.	1.3	31
8	Robust age, but limited sex, differences in mu-opioid receptors in the rat brain: relevance for reward and drug-seeking behaviors in juveniles. Brain Structure and Function, 2018, 223, 475-488.	1.2	22
9	Involvement of dopamine, but not norepinephrine, in the sex-specific regulation of juvenile socially rewarding behavior by vasopressin. Neuropsychopharmacology, 2018, 43, 2109-2117.	2.8	20
10	Sex differences in neural activation following different routes of oxytocin administration in awake adult rats. Psychoneuroendocrinology, 2017, 81, 52-62.	1.3	30
11	Involvement of the oxytocin system in the nucleus accumbens in the regulation of juvenile social novelty-seeking behavior. Hormones and Behavior, 2017, 93, 94-98.	1.0	36
12	Quantitative mapping reveals age and sex differences in vasopressin, but not oxytocin, immunoreactivity in the rat social behavior neural network. Journal of Comparative Neurology, 2017, 525, 2549-2570.	0.9	58
13	Microbial lysate upregulates host oxytocin. Brain, Behavior, and Immunity, 2017, 61, 36-49.	2.0	101
14	Age and sex differences in oxytocin and vasopressin V1a receptor binding densities in the rat brain: focus on the social decision-making network. Brain Structure and Function, 2017, 222, 981-1006.	1.2	103
15	Social instability stress in adolescent male rats reduces social interaction and social recognition performance and increases oxytocin receptor binding. Neuroscience, 2017, 359, 172-182.	1.1	42
16	Role of the oxytocin system in amygdala subregions in the regulation of social interest in male and female rats. Neuroscience, 2016, 330, 138-149.	1.1	31
17	Involvement of the oxytocin system in the bed nucleus of the stria terminalis in the sex-specific regulation of social recognition. Psychoneuroendocrinology, 2016, 64, 79-88.	1.3	62
18	Vasopressin and oxytocin receptor systems in the brain: Sex differences and sex-specific regulation of social behavior. Frontiers in Neuroendocrinology, 2016, 40, 1-23.	2.5	376

Alexa H Veenema

#	Article	IF	CITATIONS
19	Social Novelty Investigation in the Juvenile Rat: Modulation by the μâ€Opioid System. Journal of Neuroendocrinology, 2015, 27, 752-764.	1.2	66
20	Distinct BOLD Activation Profiles Following Central and Peripheral Oxytocin Administration in Awake Rats. Frontiers in Behavioral Neuroscience, 2015, 9, 245.	1.0	50
21	Dynamic changes in extracellular release of GABA and glutamate in the lateral septum during social play behavior in juvenile rats: Implications for sex-specific regulation of social play behavior. Neuroscience, 2015, 307, 117-127.	1.1	52
22	Sex-specific modulation of juvenile social play behavior by vasopressin and oxytocin depends on social context. Frontiers in Behavioral Neuroscience, 2014, 8, 216.	1.0	122
23	Sex-specific modulation of juvenile social play by vasopressin. Psychoneuroendocrinology, 2013, 38, 2554-2561.	1.3	121
24	Sex differences in oxytocin receptor binding in forebrain regions: Correlations with social interest in brain region- and sex- specific ways. Hormones and Behavior, 2013, 64, 693-701.	1.0	169
25	Oxytocin mediates rodent social memory within the lateral septum and the medial amygdala depending on the relevance of the social stimulus: Male juvenile versus female adult conspecifics. Psychoneuroendocrinology, 2013, 38, 916-926.	1.3	169
26	High and abnormal forms of aggression in rats with extremes in trait anxiety – Involvement of the dopamine system in the nucleus accumbens. Psychoneuroendocrinology, 2012, 37, 1969-1980.	1.3	93
27	Vasopressin regulates social recognition in juvenile and adult rats of both sexes, but in sex- and age-specific ways. Hormones and Behavior, 2012, 61, 50-56.	1.0	105
28	Toward understanding how early-life social experiences alter oxytocin- and vasopressin-regulated social behaviors. Hormones and Behavior, 2012, 61, 304-312.	1.0	137
29	Vasopressin and Oxytocin: Keys to Understanding the Neural Control of Physiology and Behaviour. Journal of Neuroendocrinology, 2012, 24, 527-527.	1.2	8
30	Early life stress impairs social recognition due to a blunted response of vasopressin release within the septum of adult male rats. Psychoneuroendocrinology, 2011, 36, 843-853.	1.3	105
31	The Neuropeptide Oxytocin Facilitates Pro-Social Behavior and Prevents Social Avoidance in Rats and Mice. Neuropsychopharmacology, 2011, 36, 2159-2168.	2.8	339
32	Aggression and anxiety: social context and neurobiological links. Frontiers in Behavioral Neuroscience, 2010, 4, 12.	1.0	154
33	Maternal separation interferes with developmental changes in brain vasopressin and oxytocin receptor binding in male rats. Neuropharmacology, 2010, 58, 78-87.	2.0	165
34	Distinct correlations of vasopressin release within the lateral septum and the bed nucleus of the stria terminalis with the display of intermale aggression. Hormones and Behavior, 2010, 58, 273-281.	1.0	152
35	Maternal separation enhances offensive play-fighting, basal corticosterone and hypothalamic vasopressin mRNA expression in juvenile male rats. Psychoneuroendocrinology, 2009, 34, 463-467.	1.3	168
36	Early life stress, the development of aggression and neuroendocrine and neurobiological correlates: What can we learn from animal models?. Frontiers in Neuroendocrinology, 2009, 30, 497-518.	2.5	218

Alexa H Veenema

#	Article	IF	CITATIONS
37	Central vasopressin and oxytocin release: regulation of complex social behaviours. Progress in Brain Research, 2008, 170, 261-276.	0.9	274
38	Low inborn anxiety correlates with high intermale aggression: Link to ACTH response and neuronal activation of the hypothalamic paraventricular nucleus. Hormones and Behavior, 2007, 51, 11-19.	1.0	92
39	Neurobiological Mechanisms of Aggression and Stress Coping: A Comparative Study in Mouse and Rat Selection Lines. Brain, Behavior and Evolution, 2007, 70, 274-285.	0.9	123
40	Differences in intermale aggression are accompanied by opposite vasopressin release patterns within the septum in rats bred for low and high anxiety. European Journal of Neuroscience, 2007, 26, 3597-3605.	1.2	132
41	Differential Effects of Stress on Adult Hippocampal Cell Proliferation in Low and High Aggressive Mice. Journal of Neuroendocrinology, 2007, 19, 489-498.	1.2	27
42	Opposite effects of maternal separation on intermale and maternal aggression in C57BL/6 mice: Link to hypothalamic vasopressin and oxytocin immunoreactivity. Psychoneuroendocrinology, 2007, 32, 437-450.	1.3	230
43	Effects of early life stress on adult male aggression and hypothalamic vasopressin and serotonin. European Journal of Neuroscience, 2006, 24, 1711-1720.	1.2	249
44	The effect of chronic exposure to highly aggressive mice on hippocampal gene expression of non-aggressive subordinates. Brain Research, 2006, 1089, 10-20.	1.1	29
45	Long-term effects of social stress on brain and behavior: a focus on hippocampal functioning. Neuroscience and Biobehavioral Reviews, 2005, 29, 83-97.	2.9	250
46	The stress response to sensory contact in mice: genotype effect of the stimulus animal. Psychoneuroendocrinology, 2005, 30, 550-557.	1.3	28
47	Differences in the effects of 5-HT1A receptor agonists on forced swimming behavior and brain 5-HT metabolism between low and high aggressive mice. Psychopharmacology, 2005, 178, 151-160.	1.5	56
48	Basal and Stress-Induced Differences in HPA Axis, 5-HT Responsiveness, and Hippocampal Cell Proliferation in Two Mouse Lines. Annals of the New York Academy of Sciences, 2004, 1018, 255-265.	1.8	84
49	Toward an animal model for antisocial behavior: parallels between mice and humans. Behavior Genetics, 2003, 33, 563-574.	1.4	46
50	GeneChip analysis of hippocampal gene expression profiles of short- and long-attack-latency mice: Technical and biological implications. Journal of Neuroscience Research, 2003, 74, 701-716.	1.3	31
51	Effect of Corticosterone and Adrenalectomy on NMDA-Induced Cholinergic Cell Death in Rat Magnocellular Nucleus Basalis. Journal of Neuroendocrinology, 2003, 9, 713-720.	1.2	18
52	Genetic Selection For Coping Style Predicts Stressor Susceptibility. Journal of Neuroendocrinology, 2003, 15, 256-267.	1.2	176
53	Serial analysis of gene expression predicts structural differences in hippocampus of long attack latency and short attack latency mice. European Journal of Neuroscience, 2003, 17, 379-387.	1.2	51
54	Differences in basal and stress-induced HPA regulation of wild house mice selected for high and low aggression. Hormones and Behavior, 2003, 43, 197-204.	1.0	224

#	ARTICLE	IF	CITATIONS
55	Hippocampal Serotonin Responses in Short and Long Attack Latency Mice. Journal of Neuroendocrinology, 2002, 14, 234-239.	1.2	38
56	Chronic Corticosterone Administration Dose-Dependently Modulates Aβ(1-42)â^' and NMDA-Induced Neurodegeneration in Rat Magnocellular Nucleus Basalis. Journal of Neuroendocrinology, 2001, 12, 486-494.	1.2	70