Chao Pi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4025615/publications.pdf

Version: 2024-02-01

315739 304743 1,531 40 22 38 citations h-index g-index papers 40 40 40 1093 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Redox of ferrocene controlled asymmetric dehydrogenative Heck reaction via palladium-catalyzed dual C–H bond activation. Chemical Science, 2013, 4, 2675.	7.4	177
2	Direct Câ€2 Alkylation of Quinoline <i>N</i> â€Oxides with Ethers <i>via</i> Palladiumâ€Catalyzed Dehydrogenative Crossâ€Coupling Reaction. Advanced Synthesis and Catalysis, 2013, 355, 1971-1976.	4.3	131
3	Synthesis of Ferrocene Derivatives with Planar Chirality via Palladium-Catalyzed Enantioselective C–H Bond Activation. Organic Letters, 2014, 16, 5164-5167.	4.6	107
4	Directing group migration strategy in transition-metal-catalysed direct C–H functionalization. Chemical Society Reviews, 2021, 50, 3677-3689.	38.1	98
5	Iodine-Catalyzed Direct C–H Alkenylation of Azaheterocycle N-Oxides with Alkenes. Organic Letters, 2017, 19, 440-443.	4.6	73
6	Rh(III)â€Catalyzed Selective C8â^H Acylmethylation of Quinoline <i>N</i> â€Oxides. Advanced Synthesis and Catalysis, 2018, 360, 4068-4072.	4.3	70
7	Rapid assembly of cyclopentene spiroisoindolinones <i>via</i> a rhodium-catalysed redox-neutral cascade reaction. Chemical Communications, 2019, 55, 163-166.	4.1	63
8	Rh(III)-Catalyzed Tandem Acylmethylation/Nitroso Migration/Cyclization of <i>N-</i> Nitrosoanilines with Sulfoxonium Ylides in One Pot: Approach to 3-Nitrosoindoles. Organic Letters, 2020, 22, 361-364.	4.6	62
9	Iridium-Catalyzed Direct C–H Sulfamidation of Aryl Nitrones with Sulfonyl Azides at Room Temperature. Journal of Organic Chemistry, 2015, 80, 7333-7339.	3.2	60
10	Rhodium(III)-catalyzed intermolecular cyclization of anilines with sulfoxonium ylides toward indoles. Chinese Chemical Letters, 2019, 30, 1374-1378.	9.0	53
11	Visible-light-promoted sulfonylmethylation of imidazopyridines. Chinese Chemical Letters, 2019, 30, 2295-2298.	9.0	51
12	Copper-Catalyzed Oxidative [4 + 2]-Cyclization Reaction of Glycine Esters with Anthranils: Access to 3,4-Dihydroquinazolines. Organic Letters, 2019, 21, 4067-4071.	4.6	44
13	Iridium(III)â€Catalyzed Direct CH Sulfonamidation of 2â€Arylâ€1,2,3â€triazole <i>N</i> à€Oxides with Sulfonyl Azides. Advanced Synthesis and Catalysis, 2016, 358, 326-332.	4.3	41
14	lodine-catalysed N-centered [1,2]-rearrangement of 3-aminoindazoles with anilines: efficient access to 1,2,3-benzotriazines. Green Chemistry, 2020, 22, 265-269.	9.0	31
15	Generalized Chemoselective Transfer Hydrogenation/Hydrodeuteration. Advanced Synthesis and Catalysis, 2020, 362, 4119-4129.	4.3	31
16	Rh(III)-Catalyzed [4 + 2] Annulation of 3-Aryl-5-isoxazolone with Maleimides or Maleic Ester. Organic Letters, 2020, 22, 6484-6488.	4.6	30
17	I 2 â€Mediated Iodization/ [3+2] Cycloaddition/Nucleophilic Addition Tandem Reaction: Synthesis of Polyheterocycles Bearing Furoquinoline and Maleimide. Advanced Synthesis and Catalysis, 2019, 361, 1766-1770.	4.3	29
18	Palladium(II) atalyzed Enantioselective Câ^'H Alkenylation of Ferrocenecarboxylic Acid. Advanced Synthesis and Catalysis, 2020, 362, 1385-1390.	4.3	29

#	Article	IF	CITATIONS
19	Visibleâ€Lightâ€Promoted Metalâ€Free Câ€H Trifluoromethylation of Imidazopyridines. European Journal of Organic Chemistry, 2020, 2020, 1019-1022.	2.4	29
20	Divergent C(sp ²)â€"H arylation of heterocycles <i>via</i> organic photoredox catalysis. Green Chemistry, 2022, 24, 3017-3022.	9.0	29
21	Rhodium(III)-Catalyzed $[4+2]$ Annulation of $\langle i \rangle N \langle i \rangle$ -Arylbenzamidines with Propargyl Alcohols: Highly Regioselective Synthesis of 1-Aminoisoquinolines Controlled by Noncovalent Interaction. Organic Letters, 2021, 23, 6628-6632.	4.6	28
22	Iridium(III)-Catalyzed C–H Amidation of Nitrones with Dioxazolones. Journal of Organic Chemistry, 2019, 84, 5305-5312.	3.2	27
23	Rhodium(III)-catalyzed [$4\hat{a}\in\%+\hat{a}\in\%2$] annulation of N-arylbenzamidines with 1,4,2-dioxazol-5-ones: Easy access to 4-aminoquinazolines via highly selective C H bond activation. Chinese Chemical Letters, 2021, 32, 2592-2596.	9.0	26
24	Rhodium-catalyzed regioselective C8-H amination of quinoline $\langle i \rangle N \langle i \rangle$ -oxides with trifluoroacetamide at room temperature. Organic and Biomolecular Chemistry, 2018, 16, 4728-4733.	2.8	22
25	Ring opening [3 + 2] cyclization of azaoxyallyl cations with benzo[d]isoxazoles: Efficient access to 2-hydroxyaryl-oxazolines. Chinese Chemical Letters, 2020, 31, 396-400.	9.0	22
26	Direct <i>ortho</i> â€Acylation of Azoxybenzenes with Aldehydes via Palladiumâ€Catalyzed Regioselective CH Bond Activation. Asian Journal of Organic Chemistry, 2015, 4, 38-41.	2.7	20
27	Cp*Co(III)-catalyzed C H amidation of azines with dioxazolones. Chinese Chemical Letters, 2020, 31, 3237-3240.	9.0	19
28	Rh(III)-Catalyzed Synthesis of Indazolo[2,3- <i>a</i>]quinolines: Vinylene Carbonate as C1 and C2 Building Blocks. Organic Letters, 2022, 24, 2613-2618.	4.6	18
29	One-pot synthesis of pyranoquinolin-1-ones <i>via</i> Rh(<scp>iii</scp>)-catalysed redox annulation of 3-carboxyquinolines and alkynes. Organic Chemistry Frontiers, 2019, 6, 2897-2901.	4.5	17
30	Ru(III)-catalyzed construction of variously substituted quinolines from 2-aminoaromatic aldehydes (ketones) and isoxazoles: Isoxazoles as cyclization reagent and cyano sources. Chinese Chemical Letters, 2022, 33, 4064-4068.	9.0	15
31	Rhodium(III)â€Catalyzed Direct Câ€H Alkylation of 2â€Arylâ€1,2,3â€triazole <i>N</i> à€Oxides with Maleimides. European Journal of Organic Chemistry, 2018, 2018, 6919-6923.	2.4	13
32	Rh(III)â€Catalyzed Regioselective Acetylation of sp 2 Câ^'H Bond Starting from Paraformaldehyde. ChemCatChem, 2019, 11, 3791-3796.	3.7	13
33	Directed C3-Alkoxymethylation of Indole via Three-Component Cascade Reaction. Organic Letters, 2019, 21, 2081-2084.	4.6	13
34	Water and fluorinated alcohol mediated/promoted tandem insertion/aerobic oxidation/bisindolylation under metal-free conditions: Easy access to bis(indolyl)methanes. Chinese Chemical Letters, 2021, 32, 1696-1700.	9.0	12
35	Novel Ferrocene Derivatives Induce Apoptosis through Mitochondria-Dependent and Cell Cycle Arrest via PI3K/Akt/mTOR Signaling Pathway in T Cell Acute Lymphoblastic Leukemia. Cancers, 2021, 13, 4677.	3.7	8
36	Biological Evaluation of Ferrocenyl Olefins: Cancer Cell Growth Inhibition, ROS Production, and Apoptosis Activity. Archiv Der Pharmazie, 2016, 349, 186-192.	4.1	7

#	Article	IF	CITATIONS
37	Novel Ferrocene Derivatives Induce GO/G1 Cell Cycle Arrest and Apoptosis through the Mitochondrial Pathway in Human Hepatocellular Carcinoma. International Journal of Molecular Sciences, 2021, 22, 3097.	4.1	6
38	Cobalt(II)-Catalyzed C–H and N–H Functionalization of 1-Arylpyrazolidinones with Dioxazolones as Bifunctional Synthons. Organic Letters, 2022, 24, 4650-4655.	4.6	5
39	A Highly Efficient Synthesis of Optically Active Ferrocenylethylamines via Hydride Reduction of Chiral Ferrocenylketimines. Chinese Journal of Chemistry, 2013, 31, 992-996.	4.9	1
40	Three-component synthesis of \hat{l}_{\pm} -indole- \hat{l}^2 -sulfonyl tetrahydrofurans under metal-free conditions. New Journal of Chemistry, 0, , .	2.8	1