Stefano Loppi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4025592/publications.pdf Version: 2024-02-01

STEEANO LODDI

#	Article	IF	CITATIONS
1	Air quality in post-mining towns: tracking potentially toxic elements using tree leaves. Environmental Geochemistry and Health, 2023, 45, 843-859.	1.8	3
2	Foliar application of wood distillate boosts plant yield and nutritional parameters of chickpea. Annals of Applied Biology, 2023, 182, 57-64.	1.3	20
3	Impact of microplastics on growth, photosynthesis and essential elements in Cucurbita pepo L Journal of Hazardous Materials, 2022, 423, 127238.	6.5	131
4	Assessing the impact of vehicular particulate matter on cultural heritage by magnetic biomonitoring at Villa Farnesina in Rome, Italy. Science of the Total Environment, 2022, 823, 153729.	3.9	18
5	Survival of <i>Xanthoria parietina</i> in simulated space conditions: vitality assessment and spectroscopic analysis. International Journal of Astrobiology, 2022, 21, 137-153.	0.9	4
6	Bio-Based Solutions for Agriculture: Foliar Application of Wood Distillate Alone and in Combination with Other Plant-Derived Corroborants Results in Different Effects on Lettuce (Lactuca Sativa L.). Biology, 2022, 11, 404.	1.3	20
7	Foliar Application of Wood Distillate Alleviates Ozone-Induced Damage in Lettuce (Lactuca sativa L.). Toxics, 2022, 10, 178.	1.6	15
8	Bioaccumulation of potentially toxic elements in some lichen species from two remote sites of Tunisia. , 2022, 77, 2469-2473.		5
9	Wood distillate as an alternative bio-based product against lichens on sandstone. International Biodeterioration and Biodegradation, 2022, 170, 105386.	1.9	3
10	Differential elemental stoichiometry of two Mediterranean evergreen woody plants over a geochemically heterogeneous area. Perspectives in Plant Ecology, Evolution and Systematics, 2022, 55, 125672.	1.1	3
11	Effects of conventional and organic management on plant and insect communities in a traditional elephant garlic crop. Community Ecology, 2022, 23, 417-427.	0.5	2
12	Combined use of native and transplanted moss for post-mining characterization of metal(loid) river contamination. Science of the Total Environment, 2021, 750, 141669.	3.9	11
13	Effects of wood distillate and soy lecithin on the photosynthetic performance and growth of lettuce (Lactuca sativa L.). SN Applied Sciences, 2021, 3, 1.	1.5	12
14	Modeling heavy metal release in the epiphytic lichen Evernia prunastri. Environmental Science and Pollution Research, 2021, 28, 27392-27397.	2.7	1
15	Estimating Background Values of Potentially Toxic Elements Accumulated in Moss: A Case Study from Switzerland. Atmosphere, 2021, 12, 177.	1.0	3
16	Accumulation and Phytotoxicity of Two Commercial Biocides in the Lichen Evernia prunastri and the Moss Brachythecium sp Stresses, 2021, 1, 69-77.	1.8	1
17	Potentially Toxic Elements (PTEs) in Soils and Bulbs of Elephant Garlic (Allium ampeloprasum L.) Grown in Valdichiana, a Traditional Cultivation Area of Tuscany, Italy. Applied Sciences (Switzerland), 2021, 11, 7023.	1.3	7
18	Biological Effects of Air Pollution on Sensitive Bioindicators: A Case Study from Milan, Italy. Urban Science, 2021, 5, 64.	1.1	0

#	Article	IF	CITATIONS
19	Lichens as monitors of the atmospheric deposition of potentially toxic elements in high elevation Mediterranean ecosystems. Science of the Total Environment, 2021, 798, 149369.	3.9	8
20	Biochar Amendment Reduces the Availability of Pb in the Soil and Its Uptake in Lettuce. Toxics, 2021, 9, 268.	1.6	9
21	Comparison of the Mineral and Nutraceutical Profiles of Elephant Garlic (Allium ampeloprasum L.) Grown in Organic and Conventional Fields of Valdichiana, a Traditional Cultivation Area of Tuscany, Italy. Biology, 2021, 10, 1058.	1.3	11
22	Influence of Moderate Cd and Pb Soil Pollution on Seed Development, Photosynthetic Performance and Foliar Accumulation in the Medicinal Plant Hypericum perforatum. Pollutants, 2021, 1, 1-9.	1.0	2
23	Accumulation and Release of Mercury in the Lichen Evernia prunastri (L.) Ach. Biology, 2021, 10, 1198.	1.3	3
24	Characterization of the Safety Profile of Sweet Chestnut Wood Distillate Employed in Agriculture. Safety, 2021, 7, 79.	0.9	6
25	The application protocol impacts the effectiveness of biocides against lichens. International Biodeterioration and Biodegradation, 2020, 155, 105105.	1.9	11
26	Can Chitin and Chitosan Replace the Lichen Evernia prunastri for Environmental Biomonitoring of Cu and Zn Air Contamination?. Biology, 2020, 9, 301.	1.3	3
27	Effects of wood distillate (pyroligneous acid) on sensitive bioindicators (lichen and moss). Ecotoxicology and Environmental Safety, 2020, 204, 111117.	2.9	18
28	Does air pollution influence the success of species translocation? Trace elements, ultrastructure and photosynthetic performances in transplants of a threatened forest macrolichen. Ecological Indicators, 2020, 117, 106666.	2.6	9
29	Uptake of Trace Elements in the Water Fern Azolla filiculoides after Short-Term Application of Chestnut Wood Distillate (Pyroligneous Acid). Plants, 2020, 9, 1179.	1.6	14
30	Disentangling sources of trace element air pollution in complex urban areas by lichen biomonitoring. A case study in Milan (Italy). Chemosphere, 2020, 256, 127155.	4.2	25
31	Uptake and release of copper ions in epiphytic lichens. Biologia (Poland), 2020, 75, 1547-1552.	0.8	5
32	The Water Content Drives the Susceptibility of the Lichen Evernia prunastri and the Moss Brachythecium sp. to High Ozone Concentrations. Biology, 2020, 9, 90.	1.3	8
33	Magnetic Emissions from Brake Wear are the Major Source of Airborne Particulate Matter Bioaccumulated by Lichens Exposed in Milan (Italy). Applied Sciences (Switzerland), 2020, 10, 2073.	1.3	37
34	Biological effects from environmental pollution by toxic metals in the "land of fires―(Italy) assessed using the biomonitor species Lunularia cruciata L. (Dum). Environmental Pollution, 2020, 265, 115000.	3.7	18
35	Estimating Environmental Contamination and Element Deposition at an Urban Area of Central Italy. Urban Science, 2019, 3, 76.	1.1	8
36	Contribution of submicronic (PM1) and coarse (PM>1) particulate matter deposition to the heavy metal load of lichens transplanted along a busy road. Chemosphere, 2019, 231, 121-125.	4.2	16

#	Article	IF	CITATIONS
37	Coping with uncertainty in the assessment of atmospheric pollution with lichen transplants. Environmental Forensics, 2019, 20, 228-233.	1.3	16
38	Evernia Goes to School: Bioaccumulation of Heavy Metals and Photosynthetic Performance in Lichen Transplants Exposed Indoors and Outdoors in Public and Private Environments. Plants, 2019, 8, 125.	1.6	18
39	Lichens "travelling―in smokers' cars are suitable biomonitors of indoor air quality. Ecological Indicators, 2019, 103, 576-580.	2.6	22
40	New Interpretative Scales for Lichen Bioaccumulation Data: The Italian Proposal. Atmosphere, 2019, 10, 136.	1.0	30
41	High-light stress in wet and dry thalli of the endangered Mediterranean lichen Seirophora villosa (Ach.) Frödén: does size matter?. Mycological Progress, 2019, 18, 463-470.	0.5	11
42	May the Diversity of Epiphytic Lichens Be Used in Environmental Forensics?. Diversity, 2019, 11, 36.	0.7	24
43	Competition between heavy metal ions for binding sites in lichens: Implications for biomonitoring studies. Chemosphere, 2018, 199, 655-660.	4.2	25
44	Toxicity of Diclofenac in the Fern Azolla filiculoides and the Lichen Xanthoria parietina. Bulletin of Environmental Contamination and Toxicology, 2018, 100, 430-437.	1.3	20
45	One year of transplant: Is it enough for lichens to reflect the new atmospheric conditions?. Ecological Indicators, 2018, 88, 495-502.	2.6	22
46	Application of commercial biocides to lichens: Does a physiological recovery occur over time?. International Biodeterioration and Biodegradation, 2018, 129, 189-194.	1.9	17
47	Physiological and ultrastructural effects of acute ozone fumigation in the lichen Xanthoria parietina: the role of parietin and hydration state. Environmental Science and Pollution Research, 2018, 25, 8104-8112.	2.7	11
48	May lichen biomonitoring of air pollution be used for environmental justice assessment? A case study from an area of N Italy with a municipal solid waste incinerator. Environmental Forensics, 2018, 19, 265-276.	1.3	13
49	In-field and in-vitro study of the moss Leptodictyum riparium as bioindicator of toxic metal pollution in the aquatic environment: Ultrastructural damage, oxidative stress and HSP70 induction. PLoS ONE, 2018, 13, e0195717.	1.1	35
50	Functional and structural biomarkers to monitor heavy metal pollution of one of the most contaminated freshwater sites in Southern Europe. Ecotoxicology and Environmental Safety, 2018, 163, 665-673.	2.9	41
51	Magnetic properties and element concentrations in lichens exposed to airborne pollutants released during cement production. Environmental Science and Pollution Research, 2017, 24, 12063-12080.	2.7	28
52	Biomonitoring of atmospheric pollution: possibilities and future challenges. Environmental Science and Pollution Research, 2017, 24, 11865-11866.	2.7	3
53	Species- and site-specific efficacy of commercial biocides and application solvents against lichens. International Biodeterioration and Biodegradation, 2017, 123, 127-137.	1.9	35
54	The biological response chain to pollution: a case study from the "Italian Triangle of Death―assessed with the liverwort Lunularia cruciata. Environmental Science and Pollution Research, 2017, 24, 26185-26193.	2.7	30

#	Article	IF	CITATIONS
55	The influence of growth form and substrate on lichen ecophysiological responses along an aridity gradient. Environmental Science and Pollution Research, 2017, 24, 26206-26212.	2.7	6
56	Seasonal variations in intracellular trace element content and physiological parameters in the lichen Evernia prunastri transplanted to an urban environment. Acta Botanica Croatica, 2017, 76, 171-176.	0.3	23
57	Spatial Variation in the Accumulation of Elements in Thalli of the Lichen Pseudevernia furfuracea (L.) Zopf Transplanted Around a Biomass Power Plant in Italy. Archives of Environmental Contamination and Toxicology, 2016, 70, 506-521.	2.1	13
58	Bioaccumulation, physiological and ultrastructural effects of glyphosate in the lichen Xanthoria parietina (L.) Th. Fr Chemosphere, 2016, 164, 233-240.	4.2	14
59	Vitality of the cyanolichen Peltigera praetextata exposed around a cement plant (SW Slovakia): a comparison with green algal lichens. Biologia (Poland), 2016, 71, 272-280.	0.8	7
60	Impact of mechanical mowing and chemical treatment on phytosociological, pedochemical and biological parameters in roadside soils and vegetation. Ecotoxicology, 2016, 25, 279-290.	1.1	3
61	Comparison of the trace element content in transplants of the lichen Evernia prunastri and in bulk atmospheric deposition: a case study from a low polluted environment (C Italy). Biologia (Poland), 2015, 70, 460-466.	0.8	31
62	Ecophysiological and ultrastructural effects of dust pollution in lichens exposed around a cement plant (SW Slovakia). Environmental Science and Pollution Research, 2015, 22, 15891-15902.	2.7	27
63	Lichens as suitable indicators of the biological effects of atmospheric pollutants around a municipal solid waste incinerator (S Italy). Ecological Indicators, 2015, 52, 362-370.	2.6	45
64	Uptake and toxicity of glyphosate in the lichen Xanthoria parietina (L.) Th. Fr Ecotoxicology and Environmental Safety, 2015, 122, 193-197.	2.9	14
65	Spatial variation of eco-physiological parameters in the lichen Pseudevernia furfuracea transplanted in an area surrounding a cement plant (S Italy). Environmental Monitoring and Assessment, 2015, 187, 500.	1.3	14
66	Antiproliferative, Antibacterial and Antifungal Activity of the Lichen Xanthoria parietina and Its Secondary Metabolite Parietin. International Journal of Molecular Sciences, 2015, 16, 7861-7875.	1.8	77
67	Epiphytic lichens as indicators of environmental quality around a municipal solid waste landfill (C) Tj ETQq1 1 0.7	'84314 rgl 3.7	3T /Overlock
68	Effects of acute NH3 air pollution on N-sensitive and N-tolerant lichen species. Ecotoxicology and Environmental Safety, 2015, 122, 377-383.	2.9	17
69	Comparison of the trace element content in transplants of the lichen Ewernia prunastri and in bulk atmospheric deposition: a case study from a low polluted environment (C Italy). , 2015, 70, 460.		0
70	Evaluation of the suitability of Tillandsia usneoides (L.) L. as biomonitor of airborne elements in an urban area of Italy, Mediterranean basin. Atmospheric Pollution Research, 2014, 5, 226-235.	1.8	19
71	Element concentrations in the lichen Pseudevernia furfuracea (L.) Zopf transplanted around a cement factory (S Italy). Ecological Indicators, 2014, 46, 566-574.	2.6	18
72	Biological effects of ammonia released from a composting plant assessed with lichens. Environmental Science and Pollution Research, 2014, 21, 5861-5872.	2.7	16

#	Article	IF	CITATIONS
73	Temporal trends of element concentrations and ecophysiological parameters in the lichen Pseudevernia furfuracea transplanted in and around an industrial area of S Italy. Environmental Monitoring and Assessment, 2014, 186, 3149-3164.	1.3	11
74	Uptake and acute toxicity of cerium in the lichen Xanthoria parietina. Ecotoxicology and Environmental Safety, 2014, 104, 379-385.	2.9	31
75	Lichens as sentinels for air pollution at remote alpine areas (Italy). Environmental Science and Pollution Research, 2014, 21, 2563-2571.	2.7	48
76	Biomonitoring urban air pollution using transplanted lichens: element concentrations across seasons. Environmental Science and Pollution Research, 2014, 21, 12836-12842.	2.7	17
77	Estimating Atmospheric Mercury Concentrations with Lichens. Environmental Science & Technology, 2014, 48, 8754-8759.	4.6	31
78	Influence of Sample Cleaning Prior to the Analysis on the Elemental Content of the Lichen Xanthoria parietina (L.) Th.Fr Bulletin of Environmental Contamination and Toxicology, 2014, 93, 350-353.	1.3	4
79	Biological effects of airborne pollutants released during cement production assessed with lichens (SW Slovakia). Ecological Indicators, 2014, 40, 127-135.	2.6	42
80	Antiproliferative activity of three lichen species belonging to the genusPeltigera. Plant Biosystems, 2014, 148, 83-87.	0.8	5
81	Influence of angular exposure and proximity to vehicular traffic on the diversity of epiphytic lichens and the bioaccumulation of traffic-related elements. Environmental Science and Pollution Research, 2013, 20, 250-259.	2.7	41
82	Nitrogen tolerance in the lichen Xanthoria parietina: the sensitive side of a resistant species. Functional Plant Biology, 2013, 40, 237.	1.1	20
83	Physiological and chemical response of lichens transplanted in and around an industrial area of south Italy: Relationship with the lichen diversity. Ecotoxicology and Environmental Safety, 2011, 74, 650-657.	2.9	38
84	Physiological effects of mercury in the lichens Cladonia arbuscula subsp. mitis (Sandst.) Ruoss and Peltigera rufescens (Weiss) Humb Chemosphere, 2011, 82, 1030-1037.	4.2	24
85	Physiological effects of arsenic in the lichen Xanthoria parietina (L.) Th. Fr Chemosphere, 2011, 82, 963-969.	4.2	38
86	Lichen transplants as a suitable tool to identify mercury pollution from waste incinerators: a case study from NE Italy. Environmental Monitoring and Assessment, 2011, 175, 589-600.	1.3	41
87	Accumulation of nitrogen and changes in assimilation pigments of lichens transplanted in an agricultural area. Environmental Monitoring and Assessment, 2011, 178, 19-24.	1.3	9
88	Photosynthetic performance of lichen transplants as early indicator of climatic stress along an altitudinal gradient in the arid Mediterranean area. Climatic Change, 2011, 107, 305-328.	1.7	27
89	Do lichens have "memory―of their native nitrogen environment?. Planta, 2011, 233, 333-342	1.6	14
90	Leaves of Lolium multiflorum as indicators of airborne trace element distribution in Central Italy. International Journal of Environment and Health, 2010, 4, 151.	0.3	2

#	Article	IF	CITATIONS
91	Influence of sun irradiance and water availability on lichen photosynthetic pigments during a Mediterranean summer. Biologia (Poland), 2010, 65, 776-783.	0.8	25
92	Physiological Aspects of Cadmium and Nickel Toxicity in the Lichens Peltigera rufescens and Cladina arbuscula Subsp. mitis. Water, Air, and Soil Pollution, 2010, 207, 253-262.	1.1	27
93	Effects of ammonia from livestock farming on lichen photosynthesis. Environmental Pollution, 2010, 158, 2258-2265.	3.7	50
94	Monitoring H2S air pollution caused by the industrial exploitation of geothermal energy: The pitfall of using lichens as bioindicators. Environmental Pollution, 2010, 158, 2635-2639.	3.7	23
95	Time- and dose-dependency of the effects of nitrogen pollution on lichens. Ecotoxicology and Environmental Safety, 2010, 73, 1785-1788.	2.9	27
96	Lettuce plants as bioaccumulators of trace elements in a community of central Italy. Environmental Monitoring and Assessment, 2009, 149, 143-149.	1.3	15
97	Antiproliferative activity of lichen extracts on murine myeloma cells. Biologia (Poland), 2009, 64, 59-62.	0.8	30
98	Chlorophyll degradation and inhibition of polyamine biosynthesis in the lichen Xanthoria parietina under nitrogen stress. Ecotoxicology and Environmental Safety, 2009, 72, 281-285.	2.9	28
99	Physiological effects of a geothermal element: Boron excess in the epiphytic lichen Xanthoria parietina (L.) TH. FR Chemosphere, 2009, 76, 921-926.	4.2	18
100	Effects of reduced nitrogen compounds on epiphytic lichen communities in Mediterranean Italy. Science of the Total Environment, 2008, 407, 630-637.	3.9	31
101	Biomonitoring atmospheric pollution: The challenge of times in environmental policy on air quality. Environmental Pollution, 2008, 151, 269-271.	3.7	23
102	A biological method to monitor early effects of the air pollution caused by the industrial exploitation of geothermal energy. Environmental Pollution, 2008, 155, 383-388.	3.7	44
103	Assessment of environmental quality by the diversity of epiphytic lichens in a semi-arid mediterranean area (Val Basento, South Italy). Biologia (Poland), 2006, 61, 353-359.	0.8	18
104	Lichen Diversity and Lichen Transplants as Monitors of Air Pollution in a Rural Area of Central Italy. Environmental Monitoring and Assessment, 2006, 114, 361-375.	1.3	38
105	Diversity of Epiphytic Lichens and Hg Contents of Xanthoria parietina Thalli as Monitors of Geothermal Air Pollution in the Mt. Amiata Area (Central Italy). Journal of Atmospheric Chemistry, 2006, 53, 93-105.	1.4	46
106	Problems Related to Lichen Transplants to Monitor Trace Element Deposition in Repeated Surveys: A Case Study from Central Italy. Journal of Atmospheric Chemistry, 2005, 52, 221-230.	1.4	108
107	Mapping environmental effects of agriculture with epiphytic lichens. Israel Journal of Plant Sciences, 2005, 53, 115-124.	0.3	19
108	Influence of Tree Substrate on the Diversity of Epiphytic Lichens: Comparison Between Tilia platyphyllos and Quercus ilex (Central Italy). Bryologist, 2004, 107, 340-344.	0.1	28

#	Article	IF	CITATIONS
109	Ecology of soil lichens from Pliocene clay badlands of central Italy in relation to geomorphology and vascular vegetation. Catena, 2004, 55, 1-15.	2.2	14
110	Diversity of epiphytic lichens and metal contents of Parmelia caperata thalli as monitors of air pollution in the town of Pistoia (c Italy). Environmental Monitoring and Assessment, 2003, 86, 289-301.	1.3	35
111	Epiphytic lichens as sentinels for heavy metal pollution at forest ecosystems (central Italy). Environmental Pollution, 2003, 121, 327-332.	3.7	108
112	Lichens as bioindicators of environmental quality in dry Mediterranean areas: A case study from northern Greece. Israel Journal of Plant Sciences, 2003, 51, 143-151.	0.3	11
113	Biodiversity of epiphytic lichens as indicator of air pollution in the geothermal area of Lardello (Tuscany, Central Italy). Israel Journal of Plant Sciences, 2002, 50, 119-126.	0.3	11
114	Effects of temperature and rainfall on fruiting of macrofungi in oak forests of the Mediterranean area. Israel Journal of Plant Sciences, 2002, 50, 189-198.	0.3	46
115	Temporal variation of air pollution in a geothermal area of central Italy: Assessment by the biodiversity of epiphytic lichens. Israel Journal of Plant Sciences, 2002, 50, 45-50.	0.3	9
116	Biodiversity of epiphytic lichens and air pollution in the town of Siena (Central Italy). Environmental Pollution, 2002, 116, 123-128.	3.7	57
117	Evaluation of data quality in lichen biomonitoring studies: the Italian experience. Environmental Monitoring and Assessment, 2002, 75, 271-280.	1.3	25
118	EFFECT OF DUST ON EPIPHYTIC LICHEN VEGETATION IN THE MEDITERRANEAN AREA (ITALY AND GREECE). Israel Journal of Plant Sciences, 2000, 48, 91-95.	0.3	65
119	Lichens and mosses as biomonitors of trace elements in areas with thermal springs and fumarole activity (Mt. Amiata, central Italy). Chemosphere, 2000, 41, 1333-1336.	4.2	104
120	Lichens as bioindicators of temporal variations in air quality around Thessaloniki, northern Greece. Ecological Research, 1999, 14, 89-96.	0.7	21
121	Soil Contribution to the Elemental Composition of Epiphytic Lichens (Tuscany, Central Italy). Environmental Monitoring and Assessment, 1999, 58, 121-131.	1.3	87
122	Lichens and mosses as biomonitors of trace elements in a geothermal area (Mt. Amiata, central Italy). Cryptogamie, Mycologie, 1999, 20, 119-126.	0.2	37
123	Epiphytic lichens and bryophytes of forest ecosystems in Tuscany (Central Italy). Cryptogamie, Mycologie, 1999, 20, 127-135.	0.2	13
124	Relationship between environmental factors and the proportions of fungal trophic groups in forest ecosystems of the central Mediterranean area. Forest Ecology and Management, 1999, 124, 145-151.	1.4	19
125	Lichen bioindication of air quality in the Mt. Amiata geothermal area (Tuscany, Italy). Geothermics, 1998, 27, 295-304.	1.5	22

A retrospective study using epiphytic lichens as biomonitors of air quality: 1980 and 1996 (Tuscany,) Tj ETQq0 0 0 ggβT /Overlock 10 Tf

#	Article	IF	CITATIONS
127	Accumulation of Trace Metals in the Lichen Evernia prunastri Transplanted at Biomonitoring Sites in Central Italy. Bryologist, 1998, 101, 451.	0.1	2
128	EFFECTS OF GRAZING ON EPIPHYTIC LICHEN VEGETATION IN A MEDITERRANEAN MIXED EVERGREEN SCLEROPHYLLOUS AND DECIDUOUS SHRUBLAND (NORTHERN GREECE). Israel Journal of Plant Sciences, 1998, 46, 303-307.	0.3	10
129	Accumulation of Trace Metals in the Lichen Evernia prunastri Transplanted at Biomonitoring Sites in Central Italy. Bryologist, 1998, 101, 451.	0.1	30
130	ANALYSIS OF THE DISTRIBUTION OF EPIPHYTIC LICHENS ON QUERCUS PUBESCENS ALONG AN ALTITUDINAL GRADIENT IN A MEDITERRANEAN AREA (TUSCANY, CENTRAL ITALY). Israel Journal of Plant Sciences, 1997, 45, 53-58.	0.3	30
131	Epiphytic Lichens and Tree Leaves As Biomonitors of Trace Elements Released By Geothermal Power Plants. Chemistry and Ecology, 1997, 14, 31-38.	0.6	14
132	Lichens as biomonitors of geothermal radionuclide pollution. Geothermics, 1997, 26, 535-540.	1.5	9
133	Accumulation of Trace Elements in the Peripheral and Central Parts of a Foliose Lichen Thallus. Bryologist, 1997, 100, 251.	0.1	32
134	Lichens as Bioindicators of Geothermal Air Pollution in Central Italy. Bryologist, 1996, 99, 41.	0.1	45
135	EFFECTS OF AGRICULTURE ON EPIPHYTIC LICHEN VEGETATION IN CENTRAL ITALY. Israel Journal of Plant Sciences, 1996, 44, 297-307.	0.3	40
136	Lichens as long-term biomonitors of air quality in central Italy. Acta Botanica Neerlandica, 1996, 45, 563-570.	1.0	31
137	Lichen biomonitoring of trace elements in a geothermal area (central Italy). Water, Air, and Soil Pollution, 1996, 88, 177-187.	1.1	37
138	Remarks on Aspicilia parasitica (Lecanoraceae, Lichenes). Nordic Journal of Botany, 1995, 15, 557-559.	0.2	1
139	Lichens as bioindicators of air quality in Montecatini Terme (central northern Italy). Ecologia Mediterranea, 1995, 21, 87-92.	0.1	5
140	Lichen biomonitoring of trace metals in the Pistoia area (central northern Italy). Environmental Monitoring and Assessment, 1994, 29, 17-27.	1.3	35