
Patrick E Hopkins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4025430/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phase stability and mechanical properties of novel high entropy transition metal carbides. Acta Materialia, 2019, 166, 271-280.	3.8	422
2	Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices. Nature Materials, 2014, 13, 168-172.	13.3	399
3	High-entropy fluorite oxides. Journal of the European Ceramic Society, 2018, 38, 3578-3584.	2.8	399
4	Chargeâ€Induced Disorder Controls the Thermal Conductivity of Entropyâ€Stabilized Oxides. Advanced Materials, 2018, 30, e1805004.	11.1	302
5	Manipulating Thermal Conductance at Metal–Graphene Contacts via Chemical Functionalization. Nano Letters, 2012, 12, 590-595.	4.5	240
6	Thin Film Thermoelectric Metal–Organic Framework with High Seebeck Coefficient and Low Thermal Conductivity. Advanced Materials, 2015, 27, 3453-3459.	11.1	227
7	Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics. Nature Materials, 2015, 14, 414-420.	13.3	216
8	Thermal Transport across Solid Interfaces with Nanoscale Imperfections: Effects of Roughness, Disorder, Dislocations, and Bonding on Thermal Boundary Conductance. ISRN Mechanical Engineering, 2013, 2013, 1-19.	0.9	212
9	A Review of Experimental and Computational Advances in Thermal Boundary Conductance and Nanoscale Thermal Transport across Solid Interfaces. Advanced Functional Materials, 2020, 30, 1903857.	7.8	166
10	Criteria for Cross-Plane Dominated Thermal Transport in Multilayer Thin Film Systems During Modulated Laser Heating. Journal of Heat Transfer, 2010, 132, .	1.2	160
11	A high-entropy silicide: (Mo0.2Nb0.2Ta0.2Ti0.2W0.2)Si2. Journal of Materiomics, 2019, 5, 337-343.	2.8	159
12	Thermally conductive ultra-low-k dielectric layers based on two-dimensional covalent organic frameworks. Nature Materials, 2021, 20, 1142-1148.	13.3	158
13	Effects of surface roughness and oxide layer on the thermal boundary conductance at aluminum/silicon interfaces. Physical Review B, 2010, 82, .	1.1	154
14	High Conductivity and Electronâ€Transfer Validation in an nâ€Type Fluorideâ€Anionâ€Doped Polymer for Thermoelectrics in Air. Advanced Materials, 2017, 29, 1606928.	11.1	144
15	Experimental Investigation of Size Effects on the Thermal Conductivity of Silicon-Germanium Alloy Thin Films. Physical Review Letters, 2012, 109, 195901.	2.9	138
16	Influence of Interfacial Mixing on Thermal Boundary Conductance Across a Chromium/Silicon Interface. Journal of Heat Transfer, 2008, 130, .	1.2	116
17	Room-Temperature Voltage Tunable Phonon Thermal Conductivity via Reconfigurable Interfaces in Ferroelectric Thin Films. Nano Letters, 2015, 15, 1791-1795.	4.5	116
18	Effects of electron scattering at metal-nonmetal interfaces on electron-phonon equilibration in gold films. Journal of Applied Physics, 2009, 105, .	1.1	115

#	Article	IF	CITATIONS
19	Anharmonic Phonon Interactions at Interfaces and Contributions to Thermal Boundary Conductance. Journal of Heat Transfer, 2011, 133, .	1.2	109
20	Multiple phonon processes contributing to inelastic scattering during thermal boundary conductance at solid interfaces. Journal of Applied Physics, 2009, 106, .	1.1	103
21	Controlling thermal conductance through quantum dot roughening at interfaces. Physical Review B, 2011, 84, .	1.1	98
22	Influence of Inelastic Scattering at Metal-Dielectric Interfaces. Journal of Heat Transfer, 2008, 130, .	1.2	97
23	Observation of reduced thermal conductivity in a metal-organic framework due to the presence of adsorbates. Nature Communications, 2020, 11, 4010.	5.8	97
24	Size effects on the thermal conductivity of amorphous silicon thin films. Physical Review B, 2016, 93, .	1.1	95
25	Substrate influence in electron–phonon coupling measurements in thin Au films. Applied Surface Science, 2007, 253, 6289-6294.	3.1	93
26	Extreme tunability in aluminum doped Zinc Oxide plasmonic materials for near-infrared applications. Scientific Reports, 2014, 4, 6415.	1.6	93
27	Dual-phase high-entropy ultra-high temperature ceramics. Journal of the European Ceramic Society, 2020, 40, 5037-5050.	2.8	91
28	Role of interface disorder on thermal boundary conductance using a virtual crystal approach. Applied Physics Letters, 2007, 90, 054104.	1.5	84
29	Thermal conductivity and thermal boundary resistance of atomic layer deposited high- <i>k</i> dielectric aluminum oxide, hafnium oxide, and titanium oxide thin films on silicon. APL Materials, 2018, 6, .	2.2	82
30	Extension of the diffuse mismatch model for thermal boundary conductance between isotropic and anisotropic materials. Applied Physics Letters, 2009, 95, .	1.5	81
31	Modification of the Poly(bisdodecylquaterthiophene) Structure for High and Predominantly Nonionic Conductivity with Matched Dopants. Journal of the American Chemical Society, 2017, 139, 11149-11157.	6.6	81
32	Review—Investigation and Review of the Thermal, Mechanical, Electrical, Optical, and Structural Properties of Atomic Layer Deposited High- <i>k</i> Dielectrics: Beryllium Oxide, Aluminum Oxide, Hafnium Oxide, and Aluminum Nitride. ECS Journal of Solid State Science and Technology, 2017, 6, N189-N208.	0.9	81
33	Tunable thermal transport and reversible thermal conductivity switching in topologically networked bio-inspired materials. Nature Nanotechnology, 2018, 13, 959-964.	15.6	81
34	Exceptionally Low Thermal Conductivities of Films of the Fullerene Derivative PCBM. Physical Review Letters, 2013, 110, 015902.	2.9	79
35	Systematically controlling Kapitza conductance via chemical etching. Applied Physics Letters, 2012, 100, .	1.5	78
36	Size dictated thermal conductivity of GaN. Journal of Applied Physics, 2016, 120, .	1.1	77

#	Article	IF	CITATIONS
37	Role of dispersion on phononic thermal boundary conductance. Journal of Applied Physics, 2010, 108, .	1.1	76
38	Thermal transport in organic semiconducting polymers. Applied Physics Letters, 2013, 102, 251912.	1.5	74
39	Thermal boundary conductance accumulation and interfacial phonon transmission: Measurements and theory. Physical Review B, 2015, 91, .	1.1	74
40	A steady-state thermoreflectance method to measure thermal conductivity. Review of Scientific Instruments, 2019, 90, 024905.	0.6	74
41	Effect of dislocation density on thermal boundary conductance across GaSb/GaAs interfaces. Applied Physics Letters, 2011, 98, .	1.5	73
42	Tailoring thermal properties of multi-component rare earth monosilicates. Acta Materialia, 2020, 195, 698-707.	3.8	73
43	Relationship of thermal boundary conductance to structure from an analytical model plus molecular dynamics simulations. Physical Review B, 2013, 87, .	1.1	71
44	Mechanisms of nonequilibrium electron-phonon coupling and thermal conductance at interfaces. Journal of Applied Physics, 2015, 117, .	1.1	71
45	Influence of interfacial properties on thermal transport at gold:silicon contacts. Applied Physics Letters, 2013, 102, .	1.5	69
46	Modifying Surface Energy of Graphene via Plasma-Based Chemical Functionalization to Tune Thermal and Electrical Transport at Metal Interfaces. Nano Letters, 2015, 15, 4876-4882.	4.5	68
47	Efficiently suppressed thermal conductivity in ZnO thin films via periodic introduction of organic layers. Journal of Materials Chemistry A, 2014, 2, 12150-12152.	5.2	66
48	Examining Interfacial Diffuse Phonon Scattering Through Transient Thermoreflectance Measurements of Thermal Boundary Conductance. Journal of Heat Transfer, 2009, 131, .	1.2	65
49	Origin of reduction in phonon thermal conductivity of microporous solids. Applied Physics Letters, 2009, 95, .	1.5	64
50	Relative Contributions of Inelastic and Elastic Diffuse Phonon Scattering to Thermal Boundary Conductance Across Solid Interfaces. Journal of Heat Transfer, 2009, 131, .	1.2	64
51	Ultralow Thermal Conductivity of Two-Dimensional Metal Halide Perovskites. Nano Letters, 2020, 20, 3331-3337.	4.5	64
52	Thin Film Non-Noble Transition Metal Thermophysical Properties. Microscale Thermophysical Engineering, 2005, 9, 365-377.	1.2	62
53	Extracting phonon thermal conductance across atomic junctions: Nonequilibrium Green's function approach compared to semiclassical methods. Journal of Applied Physics, 2009, 106, .	1.1	62
54	Implications of cross-species interactions on the temperature dependence of Kapitza conductance. Physical Review B, 2011, 84, .	1.1	62

#	Article	IF	CITATIONS
55	Density dependence of the room temperature thermal conductivity of atomic layer deposition-grown amorphous alumina (Al2O3). Applied Physics Letters, 2014, 104, .	1.5	62
56	Experimental observation of high intrinsic thermal conductivity of AlN. Physical Review Materials, 2020, 4, .	0.9	60
57	Investigation of size and electronic effects on Kapitza conductance with non-equilibrium molecular dynamics. Applied Physics Letters, 2013, 102, .	1.5	59
58	Interface controlled thermal resistancesÂof ultra-thin chalcogenide-based phase change memory devices. Nature Communications, 2021, 12, 774.	5.8	59
59	High In-Plane Thermal Conductivity of Aluminum Nitride Thin Films. ACS Nano, 2021, 15, 9588-9599.	7.3	58
60	Spontaneous chemical functionalization via coordination of Au single atoms on monolayer MoS ₂ . Science Advances, 2020, 6, .	4.7	56
61	Upper limit to the thermal penetration depth during modulated heating of multilayer thin films with pulsed and continuous wave lasers: A numerical study. Journal of Applied Physics, 2017, 121, 175107.	1.1	55
62	Interfacial Defect Vibrations Enhance Thermal Transport in Amorphous Multilayers with Ultrahigh Thermal Boundary Conductance. Advanced Materials, 2018, 30, e1804097.	11.1	55
63	Effects of Joint Vibrational States on Thermal Boundary Conductance. Nanoscale and Microscale Thermophysical Engineering, 2007, 11, 247-257.	1.4	54
64	Influence of anisotropy on thermal boundary conductance at solid interfaces. Physical Review B, 2011, 84, .	1.1	53
65	Effects of coherent ferroelastic domain walls on the thermal conductivity and Kapitza conductance in bismuth ferrite. Applied Physics Letters, 2013, 102, .	1.5	53
66	Ion irradiation of the native oxide/silicon surface increases the thermal boundary conductance across aluminum/silicon interfaces. Physical Review B, 2014, 90, .	1.1	53
67	Thermal Boundary Conductance Across Heteroepitaxial ZnO/GaN Interfaces: Assessment of the Phonon Gas Model. Nano Letters, 2018, 18, 7469-7477.	4.5	53
68	Electron and phonon thermal conductivity in high entropy carbides with variable carbon content. Acta Materialia, 2020, 196, 231-239.	3.8	52
69	On the Assumption of Detailed Balance in Prediction of Diffusive Transmission Probability During Interfacial Transport. Nanoscale and Microscale Thermophysical Engineering, 2010, 14, 21-33.	1.4	50
70	Thermal conductivity of nano-grained SrTiO3 thin films. Applied Physics Letters, 2012, 101, .	1.5	50
71	Kapitza resistance and the thermal conductivity of amorphous superlattices. Journal of Applied Physics, 2015, 118, .	1.1	50
72	Measuring the Thermal Conductivity of Porous, Transparent SiO2 Films With Time Domain Thermoreflectance. Journal of Heat Transfer, 2011, 133, .	1.2	48

#	Article	IF	CITATIONS
73	Interplay between total thickness and period thickness in the phonon thermal conductivity of superlattices from the nanoscale to the microscale: Coherent versus incoherent phonon transport. Physical Review B, 2018, 97, .	1.1	48
74	Influence of mass and charge disorder on the phonon thermal conductivity of entropy stabilized oxides determined by molecular dynamics simulations. Journal of Applied Physics, 2019, 125, .	1.1	48
75	Analytical model for the effects of wetting on thermal boundary conductance across solid/classical liquid interfaces. Journal of Chemical Physics, 2014, 140, .	1.2	47
76	Thermal conductivity measurements via time-domain thermoreflectance for the characterization of radiation induced damage. Journal of Materials Research, 2015, 30, 1403-1412.	1.2	47
77	Inelastic phonon interactions at solid–graphite interfaces. Superlattices and Microstructures, 2010, 47, 550-555.	1.4	46
78	Minimum thermal conductivity considerations in aerogel thin films. Journal of Applied Physics, 2012, 111, .	1.1	46
79	Thermal boundary conductance across metal-gallium nitride interfaces from 80 to 450 K. Applied Physics Letters, 2014, 105, .	1.5	46
80	On the minimum limit to thermal conductivity of multi-atom component crystalline solid solutions based on impurity mass scattering. Scripta Materialia, 2017, 138, 134-138.	2.6	46
81	On the Steady-State Temperature Rise During Laser Heating of Multilayer Thin Films in Optical Pump–Probe Techniques. Journal of Heat Transfer, 2018, 140, .	1.2	46
82	Size effects in the thermal conductivity of gallium oxide (<i>\hat{l}^2</i> -Ga2O3) films grown via open-atmosphere annealing of gallium nitride. Journal of Applied Physics, 2015, 117, .	1.1	43
83	Predictions of thermal boundary conductance for systems of disordered solids and interfaces. Journal of Applied Physics, 2009, 106, .	1.1	42
84	Effect of crystalline/amorphous interfaces on thermal transport across confined thin films and superlattices. Journal of Applied Physics, 2016, 119, .	1.1	42
85	Temperature-Dependent Thermal Boundary Conductance at Al/Al2O3 and Pt/Al2O3 interfaces. International Journal of Thermophysics, 2007, 28, 947-957.	1.0	41
86	Experimental evidence of excited electron number density and temperature effects on electron-phonon coupling in gold films. Journal of Applied Physics, 2015, 117, .	1.1	41
87	Thermal conductivity measurements of non-metals via combined time- and frequency-domain thermoreflectance without a metal film transducer. Review of Scientific Instruments, 2016, 87, 094902.	0.6	41
88	Implications of Interfacial Bond Strength on the Spectral Contributions to Thermal Boundary Conductance across Solid, Liquid, and Gas Interfaces: A Molecular Dynamics Study. Journal of Physical Chemistry C, 2016, 120, 24847-24856.	1.5	41
89	Thermal conductance across harmonic-matched epitaxial Al-sapphire heterointerfaces. Communications Physics, 2020, 3, .	2.0	41
90	Thermal Conductivity in Nanoporous Gold Films during Electron-Phonon Nonequilibrium. Journal of Nanomaterials, 2008, 2008, 1-7.	1.5	40

#	Article	IF	CITATIONS
91	Molecular dynamics studies of material property effects on thermal boundary conductance. Physical Chemistry Chemical Physics, 2013, 15, 11078.	1.3	40
92	Tunable thermal conductivity via domain structure engineering in ferroelectric thin films: A phase-field simulation. Acta Materialia, 2016, 111, 220-231.	3.8	40
93	Heat-transport mechanisms in molecular building blocks of inorganic/organic hybrid superlattices. Physical Review B, 2016, 93, .	1.1	40
94	Long-lived modulation of plasmonic absorption by ballistic thermal injection. Nature Nanotechnology, 2021, 16, 47-51.	15.6	40
95	Emergent interface vibrational structure of oxide superlattices. Nature, 2022, 601, 556-561.	13.7	40
96	Spectral analysis of thermal boundary conductance across solid/classical liquid interfaces: A molecular dynamics study. Applied Physics Letters, 2014, 105, .	1.5	39
97	Voltage-Controlled Bistable Thermal Conductivity in Suspended Ferroelectric Thin-Film Membranes. ACS Applied Materials & Interfaces, 2018, 10, 25493-25501.	4.0	39
98	Applications and Impacts of Nanoscale Thermal Transport in Electronics Packaging. Journal of Electronic Packaging, Transactions of the ASME, 2021, 143, .	1.2	38
99	Effect of interface adhesion and impurity mass on phonon transport at atomic junctions. Journal of Applied Physics, 2013, 113, .	1.1	36
100	Density and size effects on the thermal conductivity of atomic layer deposited TiO2 and Al2O3 thin films. Thin Solid Films, 2018, 650, 71-77.	0.8	36
101	Heat Transfer Mechanisms and Tunable Thermal Conductivity Anisotropy in Two-Dimensional Covalent Organic Frameworks with Adsorbed Gases. Nano Letters, 2021, 21, 6188-6193.	4.5	35
102	Thermal boundary conductance response to a change in Crâ^•Si interfacial properties. Applied Physics Letters, 2006, 89, 131909.	1.5	34
103	Contribution of optical phonons to thermal boundary conductance. Applied Physics Letters, 2010, 97, .	1.5	34
104	Ultrafast and steady-state laser heating effects on electron relaxation and phonon coupling mechanisms in thin gold films. Applied Physics Letters, 2013, 103, .	1.5	34
105	Protein Thermal Conductivity Measured in the Solid State Reveals Anharmonic Interactions of Vibrations in a Fractal Structure. Journal of Physical Chemistry Letters, 2014, 5, 1077-1082.	2.1	34
106	Ultra-low thermal conductivity in TiO2:C superlattices. Journal of Materials Chemistry A, 2015, 3, 11527-11532.	5.2	33
107	Enhanced room temperature electronic and thermoelectric properties of the dilute bismuthide InGaBiAs. Journal of Applied Physics, 2012, 112, .	1.1	31
108	Influence of interband transitions on electron-phonon coupling measurements in Ni films. Applied Optics, 2007, 46, 2076.	2.1	30

#	Article	IF	CITATIONS
109	Spectral phonon scattering effects on the thermal conductivity of nano-grained barium titanate. Applied Physics Letters, 2014, 105, 082907.	1.5	30
110	Spatially resolved thermoreflectance techniques for thermal conductivity measurements from the nanoscale to the mesoscale. Journal of Applied Physics, 2019, 126, .	1.1	30
111	Effects of electron-boundary scattering on changes in thermoreflectance in thin metal films undergoing intraband excitations. Journal of Applied Physics, 2009, 105, .	1.1	29
112	Reduction in thermal conductivity and tunable heat capacity of inorganic/organic hybrid superlattices. Physical Review B, 2016, 93, .	1.1	29
113	Tuning network topology and vibrational mode localization to achieve ultralow thermal conductivity in amorphous chalcogenides. Nature Communications, 2021, 12, 2817.	5.8	29
114	On the Linear Temperature Dependence of Phonon Thermal Boundary Conductance in the Classical Limit. Journal of Heat Transfer, 2011, 133, .	1.2	28
115	Prediction and Measurement of Thermal Transport Across Interfaces Between Isotropic Solids and Graphitic Materials. Journal of Heat Transfer, 2012, 134, .	1.2	28
116	Transient thermal and nonthermal electron and phonon relaxation after short-pulsed laser heating of metals. Journal of Applied Physics, 2015, 118, .	1.1	28
117	Role of crystal structure and junction morphology on interface thermal conductance. Physical Review B, 2015, 92, .	1.1	27
118	Orders of magnitude reduction in the thermal conductivity of polycrystalline diamond through carbon, nitrogen, and oxygen ion implantation. Carbon, 2020, 157, 97-105.	5.4	27
119	Metal–organic frameworks for thermoelectric energy-conversion applications. MRS Bulletin, 2016, 41, 877-882.	1.7	26
120	Thermal Conductivity Reduction at Inorganic–Organic Interfaces: From Regular Superlattices to Irregular Gradient Layer Sequences. Advanced Materials Interfaces, 2018, 5, 1701692.	1.9	26
121	Thermal boundary conductance across epitaxial metal/sapphire interfaces. Physical Review B, 2020, 102,	1.1	26
122	High mobility and high thermoelectric power factor in epitaxial ScN thin films deposited with plasma-assisted molecular beam epitaxy. Applied Physics Letters, 2020, 116, .	1.5	26
123	Reduction in thermal boundary conductance due to proton implantation in silicon and sapphire. Applied Physics Letters, 2011, 98, 231901.	1.5	25
124	Using Laser-Induced Thermal Voxels to Pattern Diverse Materials at the Solid–Liquid Interface. ACS Applied Materials & Interfaces, 2016, 8, 21134-21139.	4.0	25
125	Strong Influence of Ti Adhesion Layer on Electron–Phonon Relaxation in Thin Gold Films: Ab Initio Nonadiabatic Molecular Dynamics. ACS Applied Materials & Interfaces, 2017, 9, 43343-43351.	4.0	25
126	Observation of solid-state bidirectional thermal conductivity switching in antiferroelectric lead zirconate (PbZrO3). Nature Communications, 2022, 13, 1573.	5.8	25

#	Article	IF	CITATIONS
127	Effects of Intra- and Interband Transitions on Electron-Phonon Coupling and Electron Heat Capacity After Short-Pulsed Laser Heating. Nanoscale and Microscale Thermophysical Engineering, 2008, 12, 320-333.	1.4	24
128	Thermal Conductance across Phosphonic Acid Molecules and Interfaces: Ballistic versus Diffusive Vibrational Transport in Molecular Monolayers. Journal of Physical Chemistry C, 2015, 119, 20931-20939.	1.5	24
129	Contribution of Ballistic Electron Transport to Energy Transfer During Electron-Phonon Nonequilibrium in Thin Metal Films. Journal of Heat Transfer, 2009, 131, .	1.2	23
130	Ultra-low thermal conductivity of ellipsoidal TiO2 nanoparticle films. Applied Physics Letters, 2011, 99,	1.5	23
131	Assessment and prediction of thermal transport at solid–self-assembled monolayer junctions. Journal of Chemical Physics, 2011, 134, 094704.	1.2	23
132	Spectral Contributions to the Thermal Conductivity of C ₆₀ and the Fullerene Derivative PCBM. Journal of Physical Chemistry Letters, 2017, 8, 2153-2157.	2.1	23
133	Titanium contacts to graphene: process-induced variability in electronic and thermal transport. Nanotechnology, 2018, 29, 145201.	1.3	23
134	The influence of titanium adhesion layer oxygen stoichiometry on thermal boundary conductance at gold contacts. Applied Physics Letters, 2018, 112, 171602.	1.5	23
135	Thermal Conductivity and Phonon Scattering Processes of ALD Grown PbTe–PbSe Thermoelectric Thin Films. Advanced Functional Materials, 2019, 29, 1904073.	7.8	23
136	Suppressed electronic contribution in thermal conductivity of Ge2Sb2Se4Te. Nature Communications, 2021, 12, 7187.	5.8	23
137	Hybridization from Guest–Host Interactions Reduces the Thermal Conductivity of Metal–Organic Frameworks. Journal of the American Chemical Society, 2022, 144, 3603-3613.	6.6	23
138	Lower limit to phonon thermal conductivity of disordered, layered solids. Applied Physics Letters, 2009, 94, .	1.5	22
139	Bulk-like Intrinsic Phonon Thermal Conductivity of Micrometer-Thick AlN Films. ACS Applied Materials & Interfaces, 2020, 12, 29443-29450.	4.0	22
140	Localization of vibrational modes leads to reduced thermal conductivity of amorphous heterostructures. Physical Review Materials, 2018, 2, .	0.9	22
141	Phonon scattering effects from point and extended defects on thermal conductivity studied via ion irradiation of crystals with self-impurities. Physical Review Materials, 2018, 2, .	0.9	22
142	Influence of electron-boundary scattering on thermoreflectance calculations after intra- and interband transitions induced by short-pulsed laser absorption. Physical Review B, 2010, 81, .	1.1	21
143	Re-examining Electron-Fermi Relaxation in Gold Films With a Nonlinear Thermoreflectance Model. Journal of Heat Transfer, 2011, 133, .	1.2	21
144	Influence of crystallographic orientation and anisotropy on Kapitza conductance via classical molecular dynamics simulations. Journal of Applied Physics, 2012, 112, 093515.	1.1	21

#	Article	IF	CITATIONS
145	Influence of Hot Electron Scattering and Electron–Phonon Interactions on Thermal Boundary Conductance at Metal/Nonmetal Interfaces. Journal of Heat Transfer, 2014, 136, .	1.2	21
146	Thermal flux limited electron Kapitza conductance in copper-niobium multilayers. Applied Physics Letters, 2015, 106, .	1.5	21
147	Temperature Dependence of Electron–Phonon Interactions in Gold Films Rationalized by Time-Domain Ab Initio Analysis. Journal of Physical Chemistry C, 2017, 121, 17488-17497.	1.5	21
148	Thermionic transport across gold-graphene-WSe ₂ van der Waals heterostructures. Science Advances, 2019, 5, eaax7827.	4.7	21
149	Control of Charge Carrier Dynamics in Plasmonic Au Films by TiO _{<i>x</i>} Substrate Stoichiometry. Journal of Physical Chemistry Letters, 2020, 11, 1419-1427.	2.1	21
150	Analytical model for thermal boundary conductance and equilibrium thermal accommodation coefficient at solid/gas interfaces. Journal of Chemical Physics, 2016, 144, 084705.	1.2	20
151	Hot Electron Thermoreflectance Coefficient of Gold during Electron–Phonon Nonequilibrium. ACS Photonics, 2018, 5, 4880-4887.	3.2	20
152	First-principles determination of the ultrahigh electrical and thermal conductivity in free-electron metals via pressure tuning the electron-phonon coupling factor. Physical Review B, 2019, 99, .	1.1	20
153	Nanoscale Wetting and Energy Transmission at Solid/Liquid Interfaces. Langmuir, 2019, 35, 2106-2114.	1.6	20
154	Bidirectionally tuning Kapitza conductance through the inclusion of substitutional impurities. Journal of Applied Physics, 2012, 112, 073519.	1.1	19
155	Conquering the Lowâ€ <i>k</i> Death Curve: Insulating Boron Carbide Dielectrics with Superior Mechanical Properties. Advanced Electronic Materials, 2016, 2, 1600073.	2.6	19
156	Interplay between mass-impurity and vacancy phonon scattering effects on the thermal conductivity of doped cadmium oxide. Applied Physics Letters, 2016, 108, 021901.	1.5	19
157	Strongly reduced thermal conductivity in hybrid ZnO/nanocellulose thin films. Journal of Materials Science, 2017, 52, 6093-6099.	1.7	19
158	Reduced dependence of thermal conductivity on temperature and pressure of multi-atom component crystalline solid solutions. Journal of Applied Physics, 2018, 123, .	1.1	19
159	Compositional and phase dependence of elastic modulus of crystalline and amorphous Hf1- <i>x</i> Zr <i>x</i> O2 thin films. Applied Physics Letters, 2021, 118, .	1.5	19
160	Impedance Matching of Atomic Thermal Interfaces Using Primitive Block Decomposition. Nanoscale and Microscale Thermophysical Engineering, 2013, 17, 263-279.	1.4	18
161	Thermal resistance and heat capacity in hafnium zirconium oxide (Hf1–xZrxO2) dielectrics and ferroelectric thin films. Applied Physics Letters, 2018, 113, .	1.5	18
162	Local thermal conductivity measurements to determine the fraction of α-cristobalite in thermally grown oxides for aerospace applications. Scripta Materialia, 2020, 177, 214-217.	2.6	18

#	Article	IF	CITATIONS
163	Effect of light atoms on thermal transport across solid–solid interfaces. Physical Chemistry Chemical Physics, 2019, 21, 17029-17035.	1.3	17
164	Enhanced Figure of Merit in Bismuth-Antimony Fine-Grained Alloys at Cryogenic Temperatures. Scientific Reports, 2019, 9, 14892.	1.6	17
165	Direct Laser Writing from Aqueous Precursors for Nano to Microscale Topographical Control, Integration, and Synthesis of Nanocrystalline Mixed Metal Oxides. ACS Applied Nano Materials, 2019, 2, 2581-2586.	2.4	17
166	Understanding Molecular Layer Deposition Growth Mechanisms in Polyurea via Picosecond Acoustics Analysis. Chemistry of Materials, 2020, 32, 1553-1563.	3.2	17
167	Thermal conductivity measurements of sub-surface buried substrates by steady-state thermoreflectance. Review of Scientific Instruments, 2021, 92, 064906.	0.6	17
168	Highly Negative Poisson's Ratio in Thermally Conductive Covalent Organic Frameworks. ACS Nano, 2022, 16, 2843-2851.	7.3	17
169	Influence of chemical ordering on the thermal conductivity and electronic relaxation in FePt thin films in heat assisted magnetic recording applications. Scientific Reports, 2016, 6, 32077.	1.6	16
170	Breaking network connectivity leads to ultralow thermal conductivities in fully dense amorphous solids. Applied Physics Letters, 2016, 109, .	1.5	16
171	Thermal Analysis of High-Power Flip-Chip-Bonded Photodiodes. Journal of Lightwave Technology, 2017, 35, 4242-4246.	2.7	16
172	Evolution of microstructure and thermal conductivity of multifunctional environmental barrier coating systems. Materials Today Physics, 2021, 17, 100304.	2.9	16
173	Impact of intrinsic point defect concentration on thermal transport in titanium dioxide. Acta Materialia, 2017, 127, 491-497.	3.8	15
174	Pronounced low-frequency vibrational thermal transport in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">C<mml:mn>60</mml:mn></mml:mi </mml:msub> fullerite realized through pressure-dependent molecular dynamics simulations. Physical Review B, 2017, 96, .</mml:math 	1.1	15
175	Effects of subconduction band excitations on thermal conductance at metal-metal interfaces. Applied Physics Letters, 2010, 96, .	1.5	14
176	Strategies for tuning phonon transport in multilayered structures using a mismatch-based particle model. Journal of Applied Physics, 2012, 111, .	1.1	14
177	Balanced InP/InGaAs Photodiodes With 1.5-W Output Power. IEEE Photonics Journal, 2013, 5, 6800307-6800307.	1.0	14
178	Crystalline coherence length effects on the thermal conductivity of MgO thin films. Journal of Materials Science, 2016, 51, 10408-10417.	1.7	14
179	Hafnium nitride films for thermoreflectance transducers at high temperatures: Potential based on heating from laser absorption. Applied Physics Letters, 2017, 111, .	1.5	14
180	Ballistic transport of long wavelength phonons and thermal conductivity accumulation in nanograined silicon-germanium alloys. Applied Physics Letters, 2017, 111, .	1.5	14

#	Article	IF	CITATIONS
181	Giant reduction and tunability of the thermal conductivity of carbon nanotubes through low-frequency resonant modes. Physical Review B, 2018, 98, .	1.1	14
182	Thin Ti adhesion layer breaks bottleneck to hot hole relaxation in Au films. Journal of Chemical Physics, 2019, 150, 184701.	1.2	14
183	Thermal properties of carbon nitride toward use as an electrode in phase change memory devices. Applied Physics Letters, 2020, 116, 043502.	1.5	14
184	Phonon scattering mechanisms dictating the thermal conductivity of lead zirconate titanate (PbZr1â°' <i>x</i> Ti <i>x</i> O3) thin films across the compositional phase diagram. Journal of Applied Physics, 2017, 121, .	1.1	13
185	Role of interfacial mode coupling of optical phonons on thermal boundary conductance. Scientific Reports, 2017, 7, 11011.	1.6	13
186	Resonant phonon modes in fullerene functionalized graphene lead to large tunability of thermal conductivity without impacting the mechanical properties. Journal of Applied Physics, 2019, 125, .	1.1	13
187	Size Effects on the Cross-Plane Thermal Conductivity of Transparent Conducting Indium Tin Oxide and Fluorine Tin Oxide Thin Films. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019, 9, 51-57.	1.4	13
188	Titanium contacts to <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Mo</mml:mi><mml:msub><mml:m mathvariant="normal">S<mml:mn>2</mml:mn></mml:m </mml:msub></mml:mrow> with interfacial oxide: Interface chemistry and thermal transport. Physical Review Materials, 2019, 3, .</mml:math 	ⁱ 0.9	13
189	A New Polystyrene–Poly(vinylpyridinium) Ionic Copolymer Dopant for nâ€Type Allâ€Polymer Thermoelectrics with High and Stable Conductivity Relative to the Seebeck Coefficient giving High Power Factor. Advanced Materials, 2022, 34, e2201062.	11.1	13
190	Phonon Contribution to Thermal Boundary Conductance at Metal Interfaces Using Embedded Atom Method Simulations. International Journal of Thermophysics, 2008, 29, 1987-1996.	1.0	12
191	Influence of Postdeposition Cooling Atmosphere on Thermoelectric Properties of 2% Al-Doped ZnO Thin Films Grown by Pulsed Laser Deposition. Journal of Electronic Materials, 2015, 44, 1547-1553.	1.0	12
192	Carbonâ€Enriched Amorphous Hydrogenated Boron Carbide Films for Very‣owâ€ <i>k</i> Interlayer Dielectrics. Advanced Electronic Materials, 2017, 3, 1700116.	2.6	12
193	Anisotropic thermal conductivity tensor of \hat{l}^2 -Y2Si2O7 for orientational control of heat flow on micrometer scales. Acta Materialia, 2020, 189, 299-305.	3.8	12
194	Mid-wave to near-IR optoelectronic properties and epsilon-near-zero behavior in indium-doped cadmium oxide. Physical Review Materials, 2021, 5, .	0.9	12
195	Boundary scattering effects during electron thermalization in nanoporous gold. Journal of Applied Physics, 2011, 109, 013524.	1.1	11
196	Contributions of electron and phonon transport to the thermal conductivity of GdFeCo and TbFeCo amorphous rare-earth transition-metal alloys. Journal of Applied Physics, 2012, 111, .	1.1	11
197	Hydrogenated nanocrystalline silicon thin films with promising thermoelectric properties. Applied Physics A: Materials Science and Processing, 2015, 120, 1497-1502.	1.1	11
198	Plasma-surface interactions in atmospheric pressure plasmas: <i>In situ</i> measurements of electron heating in materials. Journal of Applied Physics, 2018, 124, .	1.1	11

#	Article	IF	CITATIONS
199	Tuning Electrical, Optical, and Thermal Properties through Cation Disorder in Cu ₂ ZnSnS ₄ . Chemistry of Materials, 2019, 31, 8402-8412.	3.2	11
200	Interface and layer periodicity effects on the thermal conductivity of copper-based nanomultilayers with tungsten, tantalum, and tantalum nitride diffusion barriers. Journal of Applied Physics, 2020, 128,	1.1	11
201	Structural Stabilization and Piezoelectric Enhancement in Epitaxial (Ti _{1â``} <i>_x</i> Mg <i>_x</i>) _{0.25} Al _{0.75} N(0001) Layers. Advanced Functional Materials, 2020, 30, 2001915.	7.8	11
202	Thermal Conductivity Enhancement in Ion-Irradiated Hydrogenated Amorphous Carbon Films. Nano Letters, 2021, 21, 3935-3940.	4.5	11
203	Molecular tail chemistry controls thermal transport in fullerene films. Physical Review Materials, 2020, 4, .	0.9	11
204	Thermoreflectance dependence on Fermi surface electron number density perturbations. Applied Physics Letters, 2010, 96, .	1.5	10
205	Chain-Length Dependence of Thermal Conductivity in 2D Alkylammonium Lead Iodide Single Crystals. ACS Applied Materials & Interfaces, 2020, 12, 53705-53711.	4.0	10
206	Achieving a better heat conductor. Nature Materials, 2020, 19, 482-484.	13.3	10
207	Organic-component dependent thermal conductivity reduction in ALD/MLD grown ZnO:organic superlattice thin films. Applied Physics Letters, 2021, 118, 211903.	1.5	10
208	High thermal conductivity and thermal boundary conductance of homoepitaxially grown gallium nitride (GaN) thin films. Physical Review Materials, 2021, 5, .	0.9	10
209	Atomic coordination dictates vibrational characteristics and thermal conductivity in amorphous carbon. Npj Computational Materials, 2022, 8, .	3.5	10
210	Energy confinement and thermal boundary conductance effects on short-pulsed thermal ablation thresholds in thin films. Physical Review B, 2017, 96, .	1.1	9
211	Electron–Phonon Relaxation at Au/Ti Interfaces Is Robust to Alloying: Ab Initio Nonadiabatic Molecular Dynamics. Journal of Physical Chemistry C, 2019, 123, 22842-22850.	1.5	9
212	Experimental Control and Statistical Analysis of Thermal Conductivity in ZnO–Benzene Multilayer Thin Films. Journal of Physical Chemistry C, 2020, 124, 24731-24739.	1.5	9
213	Thermal Characterization of Quasi-Vertical GaAs Schottky Diodes Integrated on Silicon. IEEE Transactions on Electron Devices, 2019, 66, 349-356.	1.6	8
214	Hydrogen effects on the thermal conductivity of delocalized vibrational modes in amorphous silicon nitride <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mo>(</mml:mo> <mml:mi>a </mml:mi> <mml:mtext></mml:mtext></mml:math 	>âở.∳mml:	m t ext> <mm< td=""></mm<>
215	5, . Band alignment and defects influence the electron–phonon heat transport mechanisms across metal interfaces. Applied Physics Letters, 2021, 118, .	1.5	8

216Temperature dependent electronâ€"phonon coupling of Au resolved via lattice dynamics measured with
sub-picosecond infrared pulses. Journal of Applied Physics, 2021, 129, .1.18

#	Article	IF	CITATIONS
217	Comparison of Thermal Conductivity and Thermal Boundary Conductance Sensitivities in Continuous-Wave and Ultrashort-Pulsed Thermoreflectance Analyses. International Journal of Thermophysics, 2010, 31, 2380-2393.	1.0	7
218	Ultrafast laser-probing spectroscopy for studying molecular structure of protein aggregates. Analyst, The, 2017, 142, 1434-1441.	1.7	7
219	Large tunability in the mechanical and thermal properties of carbon nanotube-fullerene hierarchical monoliths. Nanoscale, 2018, 10, 22166-22172.	2.8	7
220	Uncertainty in linewidth quantification of overlapping Raman bands. Review of Scientific Instruments, 2019, 90, 013111.	0.6	7
221	Heat diffusion imaging: In-plane thermal conductivity measurement of thin films in a broad temperature range. Review of Scientific Instruments, 2020, 91, 113701.	0.6	7
222	Electron–phonon relaxation at the Au/WSe ₂ interface is significantly accelerated by a Ti adhesion layer: time-domain <i>ab initio</i> analysis. Nanoscale, 2022, 14, 10514-10523.	2.8	7
223	Addendum: "Reduction in thermal boundary conductance due to proton implantation in silicon and sapphire―[Appl. Phys. Lett. 98, 231901 (2011)]. Applied Physics Letters, 2012, 101, 099903.	1.5	6
224	Thermoelectric Performance Enhancement of Naturally Occurring Bi and Chitosan Composite Films Using Energy Efficient Method. Electronics (Switzerland), 2020, 9, 532.	1.8	6
225	Probing thermal conductivity of subsurface, amorphous layers in irradiated diamond. Journal of Applied Physics, 2021, 129, .	1.1	6
226	Supramolecular Interactions Lead to Remarkably High Thermal Conductivities in Interpenetrated Two-Dimensional Porous Crystals. Nano Letters, 2022, 22, 3071-3076.	4.5	6
227	Plasma-induced surface cooling. Nature Communications, 2022, 13, 2623.	5.8	6
228	Orientation-Controlled Anisotropy in Single Crystals of Quasi-1D BaTiS ₃ . Chemistry of Materials, 2022, 34, 5680-5689.	3.2	6
229	Experimental Evidence of Suppression of Subterahertz Phonons and Thermal Conductivity in GaAs/AlAs Superlattices Due to Extrinsic Scattering Processes. Journal of Physical Chemistry C, 2018, 122, 29577-29585.	1.5	5
230	Reduction and Increase in Thermal Conductivity of Si Irradiated with Ga ⁺ via Focused Ion Beam. ACS Applied Materials & Interfaces, 2018, 10, 37679-37684.	4.0	5
231	Simultaneous thickness and thermal conductivity measurements of thinned silicon from 100 nm to 17 <i>μ</i> m. Applied Physics Letters, 2021, 118, .	1.5	5
232	Glassâ€Like Thermal Conductivity of (010)â€Textured Lanthanumâ€Doped Strontium Niobate Synthesized with Wet Chemical Deposition. Journal of the American Ceramic Society, 2015, 98, 624-628.	1.9	4
233	Localized thin film damage sourced and monitored via pump-probe modulated thermoreflectance. Review of Scientific Instruments, 2017, 88, 054903.	0.6	4
234	Substrate thermal conductivity controls the ability to manufacture microstructures via laser-induced direct write. Applied Physics Letters, 2018, 112, 051906.	1.5	4

#	Article	IF	CITATIONS
235	Thermal conductivity of (Ge2Sb2Te5)1â^'xCx phase change films. Journal of Applied Physics, 2020, 128, 155106.	1.1	4
236	Vacancy-Induced Temperature-Dependent Thermal and Magnetic Properties of Holmium-Substituted Bismuth Ferrite Nanoparticle Compacts. ACS Applied Materials & Interfaces, 2022, 14, 25886-25897.	4.0	4
237	Thickness-Independent Vibrational Thermal Conductance across Confined Solid-Solution Thin Films. ACS Applied Materials & Interfaces, 2021, 13, 12541-12549.	4.0	3
238	Quasi-harmonic theory for phonon thermal boundary conductance at high temperatures. Journal of Applied Physics, 2022, 131, 015101.	1.1	3
239	Pore-Confined Polymers Enhance the Thermal Conductivity of Polymer Nanocomposites. ACS Macro Letters, 2022, 11, 116-120.	2.3	3
240	Charge confinement and thermal transport processes in modulation-doped epitaxial crystals lacking lattice interfaces. Physical Review Materials, 2019, 3, .	0.9	2
241	Reductions in the thermal conductivity of irradiated silicon governed by displacement damage. Physical Review B, 2021, 104, .	1.1	2
242	Simultaneously enhanced electrical conductivity and suppressed thermal conductivity for ALD ZnO films via purge-time controlled defects. Applied Physics Letters, 2022, 120, .	1.5	2
243	Elastic mismatch induced reduction of the thermal conductivity of silicon with aluminum nano-inclusions. Applied Physics Letters, 2018, 112, .	1.5	1
244	Thermal conductance of aluminum oxy-fluoride passivation layers. Applied Physics Letters, 2019, 115, .	1.5	1
245	Detection of sub-micrometer thermomechanical and thermochemical failure mechanisms in titanium with a laser-based thermoreflectance technique. Journal of Applied Physics, 2022, 131, 055104.	1.1	1
246	Observing Misfit Dislocation Interactions Across Thin Film Oxide Heterostructures. Microscopy and Microanalysis, 2016, 22, 1506-1507.	0.2	0
247	Goniometry Versus Profilometry Studies of Contact Angle for PEDOT:PSS Deposited Onto Silicon and Fused Silica Substrates. MRS Advances, 2016, 1, 471-475.	0.5	0
248	Thermal investigation of high-power photodiodes. , 2017, , .		0
249	Upper limits to thermal conductance across gallium nitride interfaces: Predictions and measurements. , 2022, , 83-102.		0