Berit Granum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4024501/publications.pdf Version: 2024-02-01

REDIT COANLIM

#	Article	IF	CITATIONS
1	In utero exposure to bisphenols and asthma, wheeze, and lung function in school-age children: a prospective meta-analysis of 8 European birth cohorts. Environment International, 2022, 162, 107178.	4.8	15
2	Maternal Stress, Early Life Factors and Infant Salivary Cortisol Levels. Children, 2022, 9, 623.	0.6	2
3	The effect of nicotine-containing products and fetal sex on placenta-associated circulating midpregnancy biomarkers. Biology of Sex Differences, 2022, 13, .	1.8	1
4	Physical activity in pregnancy: a Norwegian-Swedish mother-child birth cohort study. AJOG Global Reports, 2021, 1, 100002.	0.4	4
5	Maternal and paternal atopic dermatitis and risk of atopic dermatitis during early infancy in girls and boys. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 416-418.e2.	2.0	1
6	Predicting Skin Barrier Dysfunction and Atopic Dermatitis in Early Infancy. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 664-673.e5.	2.0	35
7	Perfluoroalkyl substances, airways infections, allergy and asthma related health outcomes – implications of gender, exposure period and study design. Environment International, 2020, 134, 105259.	4.8	55
8	Multiple environmental exposures in early-life and allergy-related outcomes in childhood. Environment International, 2020, 144, 106038.	4.8	27
9	Allergic disease and risk of stress in pregnant women: a PreventADALL study. ERJ Open Research, 2020, 6, 00175-2020.	1.1	3
10	Skin emollient and early complementary feeding to prevent infant atopic dermatitis (PreventADALL): a factorial, multicentre, cluster-randomised trial. Lancet, The, 2020, 395, 951-961.	6.3	156
11	Maternal use of nicotine products and breastfeeding 3Âmonths postpartum. Acta Paediatrica, International Journal of Paediatrics, 2020, 109, 2594-2603.	0.7	5
12	Prenatal exposure to perfluoroalkyl substances, immune-related outcomes, and lung function in children from a Spanish birth cohort study. International Journal of Hygiene and Environmental Health, 2019, 222, 945-954.	2.1	33
13	Opinion of the Scientific Committee on Consumer safety (SCCS) – Opinion on the safety of cosmetic ingredient salicylic acid (CAS 69-72-7). Regulatory Toxicology and Pharmacology, 2019, 108, 104376.	1.3	1
14	Maternal levels of perfluoroalkyl substances (PFASs) during pregnancy and childhood allergy and asthma related outcomes and infections in the Norwegian Mother and Child (MoBa) cohort. Environment International, 2019, 124, 462-472.	4.8	64
15	Opinion of the Scientific Committee on consumer safety (SCCS) – Final opinion on the safety of fragrance ingredient Acetylated Vetiver Oil (AVO) - (Vetiveria zizanioides root extract acetylated) - Submission III. Regulatory Toxicology and Pharmacology, 2019, 107, 104389.	1.3	2
16	Opinion of the Scientific Committee on Consumer safety (SCCS) – Opinion on Ethylzingerone - â€~Hydroxyethoxyphenyl Butanone' (HEPB) - Cosmetics Europe No P98 - CAS No 569646-79-3 - Submission II (eye irritation). Regulatory Toxicology and Pharmacology, 2019, 107, 104393.	1.3	2
17	Stopping when knowing: use of snus and nicotine during pregnancy in Scandinavia. ERJ Open Research, 2019, 5, 00197-2018.	1.1	10
18	Personal assessment of the external exposome during pregnancy and childhood in Europe Environmental Research, 2019, 174, 95-104.	3.7	27

#	Article	IF	CITATIONS
19	Early-life exposome and lung function in children in Europe: an analysis of data from the longitudinal, population-based HELIX cohort. Lancet Planetary Health, The, 2019, 3, e81-e92.	5.1	100
20	Snus in pregnancy and infant birth size: a mother–child birth cohort study. ERJ Open Research, 2019, 5, 00255-2019.	1.1	4
21	Exposure to phthalate metabolites, phenols and organophosphate pesticide metabolites and blood pressure during pregnancy. International Journal of Hygiene and Environmental Health, 2019, 222, 446-454.	2.1	50
22	Prenatal exposure to phenols and lung function, wheeze, and asthma in school-age children from 8 European birth cohorts. , 2019, , .		2
23	Is childhood asthma associated with biological aging markers?. , 2019, , .		Ο
24	Prenatal exposure to perfluoralkyl substances (PFASs) associated with respiratory tract infections but not allergy- and asthma-related health outcomes in childhood. Environmental Research, 2018, 160, 518-523.	3.7	77
25	Preventing Atopic Dermatitis and <scp>ALL</scp> ergies in Children—the Prevent <scp>ADALL</scp> study. Allergy: European Journal of Allergy and Clinical Immunology, 2018, 73, 2063-2070.	2.7	68
26	Opinion of the Scientific Committee on Consumer safety (SCCS) – Final opinion on water-soluble zinc salts used in oral hygiene products. Regulatory Toxicology and Pharmacology, 2018, 99, 249-250.	1.3	3
27	Variability of urinary concentrations of non-persistent chemicals in pregnant women and school-aged children. Environment International, 2018, 121, 561-573.	4.8	106
28	Human Early Life Exposome (HELIX) study: a European population-based exposome cohort. BMJ Open, 2018, 8, e021311.	0.8	161
29	Early life exposome and lung function in children from the HELIX cohort. , 2018, , .		4
30	Risk Assessment of "Other Substances" – Lycopene. European Journal of Nutrition & Food Safety, 2018, 8, 142-144.	0.2	2
31	Risk Assessment of "Other Substances" – Taurine. European Journal of Nutrition & Food Safety, 2018, 8, 170-173.	0.2	1
32	Risk Assessment of "Other Substances" – Piperine. European Journal of Nutrition & Food Safety, 2018, 8, 145-147.	0.2	0
33	Risk Assessment of "Other Substances" – Curcumin. European Journal of Nutrition & Food Safety, 2018, 8, 139-141.	0.2	Ο
34	Risk Assessment of "Other Substances" – L-Citrulline. European Journal of Nutrition & Food Safety, 2018, 8, 113-115.	0.2	0
35	Risk Assessment of "Other Substances" – Collagen from Fish Skin. European Journal of Nutrition & Food Safety, 2018, 8, 105-107.	0.2	0
36	Risk Assessment of "Other Substances" – Inulin. European Journal of Nutrition & Food Safety, 2018, 8, 190-192.	0.2	0

#	Article	IF	CITATIONS
37	Risk Assessment of "Other Substances" – Coenzyme Q10. European Journal of Nutrition & Food Safety, 2018, 8, 167-169.	0.2	0
38	Risk Assessment of "Other Substances" – D-Ribose. European Journal of Nutrition & Food Safety, 2018, 8, 187-189.	0.2	0
39	Risk Assessment of "Other Substances" – Caffeine. European Journal of Nutrition & Food Safety, 2018, 8, 183-186.	0.2	0
40	Risk Assessment of "Other Substances" – L-Carnitine and L-Carnitine-L-tartrate. European Journal of Nutrition & Food Safety, 2018, 8, 174-176.	0.2	0
41	Risk Assessment of "Other Substances" – Inositol. European Journal of Nutrition & Food Safety, 2018, 8, 180-182.	0.2	0
42	Prenatal exposure to perfluoroalkyl substances and immune and respiratory outcomes. , 2018, , .		0
43	Risk Assessment of "Other Substances" – D-Glucurono-γ-lactone. European Journal of Nutrition & Food Safety, 2017, 8, 11-13.	0.2	0
44	Assessment of recent developmental immunotoxicity studies with bisphenol A in the context of the 2015 EFSA t-TDI. Reproductive Toxicology, 2016, 65, 448-456.	1.3	40
45	Exposure of Norwegian toddlers to perfluoroalkyl substances (PFAS): The association with breastfeeding and maternal PFAS concentrations. Environment International, 2016, 94, 687-694.	4.8	72
46	Determinants of plasma PCB, brominated flame retardants, and organochlorine pesticides in pregnant women and 3 year old children in The Norwegian Mother and Child Cohort Study. Environmental Research, 2016, 146, 136-144.	3.7	61
47	A Simple Pharmacokinetic Model of Prenatal and Postnatal Exposure to Perfluoroalkyl Substances (PFASs). Environmental Science & Technology, 2016, 50, 978-986.	4.6	75
48	Cord blood gene expression supports that prenatal exposure to perfluoroalkyl substances causes depressed immune functionality in early childhood. Journal of Immunotoxicology, 2016, 13, 173-180.	0.9	66
49	Personal exposure monitoring to environment-related factors during early life and childhood. ISEE Conference Abstracts, 2016, 2016, .	0.0	0
50	Variability of urinary phenols and phthalate metabolites in school-age children of 5 European countries. ISEE Conference Abstracts, 2016, 2016, .	0.0	0
51	Risk Assessments of Cyclamate, Saccharin, Neohesperidine DC, Steviol Glycosides and Neotamefrom Soft Drinks, "Saft―and Nectar. European Journal of Nutrition & Food Safety, 2015, 5, 72-74.	0.2	3
52	Micronuclei in Cord Blood Lymphocytes and Associations with Biomarkers of Exposure to Carcinogens and Hormonally Active Factors, Gene Polymorphisms, and Gene Expression: The NewGeneris Cohort. Environmental Health Perspectives, 2014, 122, 193-200.	2.8	25
53	The Human Early-Life Exposome (HELIX): Project Rationale and Design. Environmental Health Perspectives, 2014, 122, 535-544.	2.8	280
54	The effect of dietary estimates calculated using food frequency questionnaires on micronuclei formation in European pregnant women: a NewGeneris study. Mutagenesis, 2014, 29, 393-400.	1.0	11

#	Article	IF	CITATIONS
55	Maternal diet, prenatal exposure to dioxin-like compounds and birth outcomes in a European prospective mother–child study (NewGeneris). Science of the Total Environment, 2014, 484, 121-128.	3.9	34
56	Prenatal exposure to polychlorinated biphenyls and dioxins from the maternal diet may be associated with immunosuppressive effects that persist into early childhood. Food and Chemical Toxicology, 2013, 51, 165-172.	1.8	72
57	Dietary Acrylamide Intake during Pregnancy and Fetal Growth—Results from the Norwegian Mother and Child Cohort Study (MoBa). Environmental Health Perspectives, 2013, 121, 374-379.	2.8	76
58	Pre-natal exposure to perfluoroalkyl substances may be associated with altered vaccine antibody levels and immune-related health outcomes in early childhood. Journal of Immunotoxicology, 2013, 10, 373-379.	0.9	245
59	Birth Weight, Head Circumference, and Prenatal Exposure to Acrylamide from Maternal Diet: The European Prospective Mother–Child Study (NewGeneris). Environmental Health Perspectives, 2012, 120, 1739-1745.	2.8	95
60	Global Gene Expression Analysis in Cord Blood Reveals Gender-Specific Differences in Response to Carcinogenic Exposure <i>In Utero</i> . Cancer Epidemiology Biomarkers and Prevention, 2012, 21, 1756-1767.	1.1	36
61	Pet keeping and tobacco exposure influence <scp><scp>CD14</scp></scp> methylation in childhood. Pediatric Allergy and Immunology, 2012, 23, 746-753.	1.1	23
62	Selfâ€ŧesting for contact sensitization to hair dyes – scientific considerations and clinical concerns of an industryâ€led screening programme. Contact Dermatitis, 2012, 66, 300-311.	0.8	25
63	Prenatal exposure to polychlorinated biphenyls and dioxins is associated with increased risk of wheeze and infections in infants. Food and Chemical Toxicology, 2011, 49, 1843-1848.	1.8	59
64	Transcriptomic Profile Indicative of Immunotoxic Exposure: In Vitro Studies in Peripheral Blood Mononuclear Cells. Toxicological Sciences, 2010, 118, 19-30.	1.4	30
65	CD14 polymorphisms and serum CD14 levels through childhood: AÂrole for gene methylation?. Journal of Allergy and Clinical Immunology, 2010, 125, 1361-1368.	1.5	39
66	Evaluation of the genotoxicity of 10 selected dietary/environmental compounds with the in vitro micronucleus cytokinesis-block assay in an interlaboratory comparison. Food and Chemical Toxicology, 2010, 48, 2612-2623.	1.8	29
67	Soluble CD14: Role in atopic disease and recurrent infections, including otitis media. Current Allergy and Asthma Reports, 2007, 7, 436-443.	2.4	17
68	The Effect of Particles on Allergic Immune Responses. Toxicological Sciences, 2002, 65, 7-17.	1.4	81
69	Fine particles of widely different composition have an adjuvant effect on the production of allergen-specific antibodies. Toxicology Letters, 2001, 118, 171-181.	0.4	54
70	Leptin Does Not Influence the IgE Response to Ovalbumin in Mice. Clinical Immunology, 2001, 101, 8-11.	1.4	3
71	IgE adjuvant effect caused by particles — immediate and delayed effects. Toxicology, 2001, 156, 149-159.	2.0	36
72	lgE Adjuvant Activity of Particles—What Physical Characteristics are Important?. Inhalation Toxicology, 2000, 12, 365-372.	0.8	11

#	Article	IF	CITATIONS
73	Adjuvant activity of particulate pollutants in different mouse models. Toxicology, 2000, 152, 69-77.	2.0	41
74	The Adjuvant Effect of Particles – Importance of Genetic Background and Pre-Sensitisation. International Archives of Allergy and Immunology, 2000, 122, 167-173.	0.9	14
75	Risk Assessment of Furan Exposure in the Norwegian Population. European Journal of Nutrition & Food Safety, 0, , 44-46.	0.2	2
76	Risk Assessment of Coumarin Intake in the Norwegian Population. European Journal of Nutrition & Food Safety, 0, , 72-75.	0.2	1
77	Risk Assessments of Aspartame, Acesulfame K, Sucralose and Benzoic Acid from Soft Drinks, "Saftâ€; Nectar and Flavoured Water. European Journal of Nutrition & Food Safety, 0, , 66-68.	0.2	0