
Vitaliy B Borisov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4024064/publications.pdf Version: 2024-02-01

VITALIX R RODISOV

#	Article	IF	CITATIONS
1	Recent Advances in Structural Studies of Cytochrome bd and Its Potential Application as a Drug Target. International Journal of Molecular Sciences, 2022, 23, 3166.	1.8	21
2	Bioenergetics and Reactive Nitrogen Species in Bacteria. International Journal of Molecular Sciences, 2022, 23, 7321.	1.8	8
3	His57 controls the efficiency of ESR, a light-driven proton pump from Exiguobacterium sibiricum at low and high pH. Biochimica Et Biophysica Acta - Bioenergetics, 2021, 1862, 148328.	0.5	11
4	Bacterial Oxidases of the Cytochrome <i>bd</i> Family: Redox Enzymes of Unique Structure, Function, and Utility As Drug Targets. Antioxidants and Redox Signaling, 2021, 34, 1280-1318.	2.5	45
5	Terminal Oxidase Cytochrome bd Protects Bacteria Against Hydrogen Sulfide Toxicity. Biochemistry (Moscow), 2021, 86, 22-32.	0.7	15
6	ROS Defense Systems and Terminal Oxidases in Bacteria. Antioxidants, 2021, 10, 839.	2.2	59
7	In Escherichia coli Ammonia Inhibits Cytochrome bo3 But Activates Cytochrome bd-I. Antioxidants, 2021, 10, 13.	2.2	11
8	Proton Pumping and Non-Pumping Terminal Respiratory Oxidases: Active Sites Intermediates of These Molecular Machines and Their Derivatives. International Journal of Molecular Sciences, 2021, 22, 10852.	1.8	15
9	Impact of Hydrogen Sulfide on Mitochondrial and Bacterial Bioenergetics. International Journal of Molecular Sciences, 2021, 22, 12688.	1.8	23
10	Nitric Oxide Does Not Inhibit but Is Metabolized by the Cytochrome bcc-aa3 Supercomplex. International Journal of Molecular Sciences, 2020, 21, 8521.	1.8	9
11	In the respiratory chain of Escherichia coli cytochromes bd-I and bd-II are more sensitive to carbon monoxide inhibition than cytochrome bo3. Biochimica Et Biophysica Acta - Bioenergetics, 2019, 1860, 148088.	0.5	21
12	Cytochrome bd and Gaseous Ligands in Bacterial Physiology. Advances in Microbial Physiology, 2017, 71, 171-234.	1.0	50
13	Photosystem II and terminal respiratory oxidases molecular machines operating in opposite directions. Frontiers in Bioscience - Landmark, 2017, 22, 1379-1426.	3.0	25
14	Cytochrome bd oxidase sustains sulfide-resistant bacterial respiration and growth. Free Radical Biology and Medicine, 2016, 96, S43-S44.	1.3	0
15	The Terminal Oxidase Cytochrome bd Promotes Sulfide-resistant Bacterial Respiration and Growth. Scientific Reports, 2016, 6, 23788.	1.6	118
16	Evidence for Fast Electron Transfer between the High-Spin Haems in Cytochrome bd-I from Escherichia coli. PLoS ONE, 2016, 11, e0155186.	1.1	20
17	Oxygen as Acceptor. EcoSal Plus, 2015, 6, .	2.1	51
18	Cytochrome bd from Escherichia coli catalyzes peroxynitrite decomposition. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 182-188.	0.5	39

VITALIY B BORISOV

#	Article	IF	CITATIONS
19	Microsecond Time-Resolved Absorption Spectroscopy Used to Study CO Compounds of Cytochrome bd from Escherichia coli. PLoS ONE, 2014, 9, e95617.	1.1	20
20	Cytochrome bd oxidase and bacterial tolerance to oxidative and nitrosative stress. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 1178-1187.	0.5	180
21	Cytochrome <i>bd</i> oxidase from <i>Escherichia coli</i> displays high catalase activity: An additional defense against oxidative stress. FEBS Letters, 2013, 587, 2214-2218.	1.3	97
22	Accommodation of CO in the di-heme active site of cytochrome bd terminal oxidase from Escherichia coli. Journal of Inorganic Biochemistry, 2013, 118, 65-67.	1.5	24
23	Cytochrome <i>bd</i> Oxidase and Hydrogen Peroxide Resistance in Mycobacterium tuberculosis. MBio, 2013, 4, e01006-13.	1.8	33
24	Optical and magneto-optical activity of cytochrome bd from Geobacillus thermodenitrificans. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 2087-2094.	0.5	33
25	Cytochrome <i>bd</i> oxidase and nitric oxide: From reaction mechanisms to bacterial physiology. FEBS Letters, 2012, 586, 622-629.	1.3	76
26	Catalytic intermediates of cytochrome bd terminal oxidase at steady-state: Ferryl and oxy-ferrous species dominate. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 503-509.	0.5	36
27	The cytochrome bd respiratory oxygen reductases. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 1398-1413.	0.5	445
28	Aerobic respiratory chain of <i>Escherichia coli</i> is not allowed to work in fully uncoupled mode. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17320-17324.	3.3	121
29	Heme–heme and heme–ligand interactions in the di-heme oxygen-reducing site of cytochrome bd from Escherichia coli revealed by nanosecond absorption spectroscopy. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 1657-1664.	0.5	36
30	Heme/heme redox interaction and resolution of individual optical absorption spectra of the hemes in cytochrome bd from Escherichia coli. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 1246-1253.	0.5	32
31	Assembly of a chimeric respiratory chain from bovine heart submitochondrial particles and cytochrome <i>bd</i> terminal oxidase of <i>Escherichia coli</i> . FEBS Letters, 2009, 583, 1287-1291.	1.3	15
32	Reaction of nitric oxide with the oxidized di-heme and heme–copper oxygen-reducing centers of terminal oxidases: Different reaction pathways and end-products. Journal of Inorganic Biochemistry, 2009, 103, 1185-1187.	1.5	40
33	Oxygen as Acceptor. EcoSal Plus, 2009, 3, .	2.1	10
34	The fully oxidized form of the cytochrome <i>bd</i> quinol oxidase from <i>E. coli</i> does not participate in the catalytic cycle: Direct evidence from rapid kinetics studies. FEBS Letters, 2008, 582, 3705-3709.	1.3	33
35	Strong Excitonic Interactions in the Oxygen-Reducing Site of <i>bd</i> -Type Oxidase:  The Fe-to-Fe Distance between Hemes <i>d</i> and <i>b</i> ₅₉₅ is 10 Ã Biochemistry, 2008, 47, 1752-1759.	1.2	41
36	Glutamate 107 in Subunit I of Cytochrome <i>bd</i> from <i>Escherichia coli</i> Is Part of a Transmembrane Intraprotein Pathway Conducting Protons from the Cytoplasm to the Heme <i>b</i> ₅₉₅ /Heme <i>d</i> Active Site. Biochemistry, 2008, 47, 7907-7914.	1.2	50

VITALIY B BORISOV

#	Article	IF	CITATIONS
37	Discovery of the True Peroxy Intermediate in the Catalytic Cycle of Terminal Oxidases by Real-time Measurement. Journal of Biological Chemistry, 2007, 282, 28514-28519.	1.6	49
38	Redox control of fast ligand dissociation from Escherichia coli cytochrome bd. Biochemical and Biophysical Research Communications, 2007, 355, 97-102.	1.0	79
39	Cytochrome <i>bd</i> from <i>Azotobacter vinelandii</i> :  Evidence for High-Affinity Oxygen Binding. Biochemistry, 2007, 46, 11177-11184.	1.2	61
40	Nitric oxide reacts with the ferryl-oxo catalytic intermediate of the CuB-lacking cytochromebdterminal oxidase. FEBS Letters, 2006, 580, 4823-4826.	1.3	46
41	Time-resolved electrometric and optical studies on cytochrome bd suggest a mechanism of electron-proton coupling in the di-heme active site. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3657-3662.	3.3	76
42	Oxygenated complex of cytochromebdfromEscherichia coli: Stability and photolability. FEBS Letters, 2005, 579, 4567-4570.	1.3	55
43	Interaction of the bacterial terminal oxidase cytochromebdwith nitric oxide. FEBS Letters, 2004, 576, 201-204.	1.3	79
44	Mutations in respiratory chain complexes and human diseases. Italian Journal of Biochemistry, 2004, 53, 34-40.	0.3	8
45	Interactions between Heme d and Heme b595 in Quinol Oxidase bd from Escherichia coli: A Photoselection Study Using Femtosecond Spectroscopy. Biochemistry, 2002, 41, 1654-1662.	1.2	71
46	Defects in mitochondrial respiratory complexes III and IV, and human pathologies. Molecular Aspects of Medicine, 2002, 23, 385-412.	2.7	35
47	Interaction of Cytochrome bd with Carbon Monoxide at Low and Room Temperatures. Journal of Biological Chemistry, 2001, 276, 22095-22099.	1.6	49
48	Electrogenic Reactions of Cytochromebdâ€. Biochemistry, 2000, 39, 13800-13809.	1.2	78