Xiang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/402398/publications.pdf

Version: 2024-02-01

		1040056	1058476
33	232	9	14
papers	citations	h-index	g-index
33	33	33	324
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Paddlewheel 1,2,4-diazaphospholide dibismuthanes with very short bismuth–bismuth single bonds. Chemical Communications, 2015, 51, 16184-16187.	4.1	23
2	Determination of dopamine hydrochloride by host-guest interaction based on water-soluble pillar[5]arene. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 173, 6-12.	3.9	23
3	Adsorption of multiple H2 molecules on the complex TiC6H6: An unusual combination of chemisorption and physisorption. Energy, 2019, 171, 315-325.	8.8	22
4	A fluorescence on–off sensor for Cu ²⁺ and its resultant complex as an off–on sensor for Cr ³⁺ in aqueous media. RSC Advances, 2015, 5, 74629-74637.	3.6	21
5	Direct Evidence for Neutral <i>N</i> -Pyrazolyl Radicals: Paddlewheel Dibismuthanes Bearing Pyrazolato Ligands with Very Short Bi–Bi Single Bonds. Inorganic Chemistry, 2017, 56, 12678-12681.	4.0	19
6	Theoretical Elucidation of the Platinum-Mediated Arene Câ [^] 'H Activation Reactions. Organometallics, 2007, 26, 2203-2210.	2.3	16
7	The mechanisms for N-heterocyclic olefin-catalyzed formation of cyclic carbonate from CO2 and propargylic alcohols. Journal of Molecular Modeling, 2016, 22, 94.	1.8	11
8	Direct Ab Initio Dynamics Study of Radical C ₄ H (XÌ f ² Î \pounds ⁺) + CH ₄ Reaction. Journal of Physical Chemistry A, 2011, 115, 3576-3582.	2.5	10
9	Direct ab initio dynamics study of the reaction of C ₂ (A ³ î _{<i>u</i>}) with CH ₄ . International Journal of Quantum Chemistry, 2012, 112, 1078-1085.	2.0	10
10	Calculations of the geometries, electronic structures and nonlinear second-order optical susceptibilities of spiroannelated quinone-type methanofullerenes. Theoretical Chemistry Accounts, 2001, 106, 241-250.	1.4	9
11	Molecular and dissociated adsorption of hydrogen on TiC6H6. International Journal of Hydrogen Energy, 2019, 44, 25800-25808.	7.1	8
12	Linear complex HC C-TMH (TM=Sc–Ni): A simple and efficient adsorbent for hydrogen molecules. International Journal of Hydrogen Energy, 2019, 44, 18145-18152.	7.1	8
13	Direct ab initio dynamics study of the reaction of C2(A3Îu) radical with C2H6. Chemical Physics Letters, 2011, 503, 210-214.	2.6	7
14	Germanium and Tin Monoxides Trapped by Oxophilic Germylene and Stannylene Ligands. Inorganic Chemistry, 2017, 56, 10220-10225.	4.0	7
15	Mechanism for covalence bond benzene dimers formation: A DFT and MP2 investigation. Chemical Physics Letters, 2014, 610-611, 192-197.	2.6	5
16	Multiple electronic state mechanism for carboryne reaction with benzene: A DFT study. International Journal of Quantum Chemistry, 2017, 117, e25372.	2.0	4
17	Mechanisms and Activity of 1â€Phenylethanol Dehydrogenation Catalyzed by Bifunctional NHCâ€Ir ^{III} Complex. European Journal of Organic Chemistry, 2019, 2019, 3929-3936.	2.4	4
18	Mechanism Study of C ₄ H(X ² â^f ⁺)+H ₂ Reaction by Direct <i>Ab Initio</i> Methods. Acta Chimica Sinica, 2013, 71, 743.	1.4	4

#	Article	IF	Citations
19	Mechanism for phenanthridines synthesis by nitrogenation of 2-acetylbiphenyls in acidic solution: a DFT study. Journal of Molecular Modeling, 2016, 22, 280.	1.8	3
20	Exploring the mechanism of alkene hydrogenation catalyzed by defined iron complex from DFT computation. Journal of Molecular Modeling, 2019, 25, 61.	1.8	3
21	Theoretical study on electronic structure of (CNC)Fe_2N ₂ and its N ₂ elimination mechanism. International Journal of Quantum Chemistry, 2010, 110, 1880-1889.	2.0	2
22	The substitution reaction of (CNC)Feâ^2N2 with CO. Journal of Molecular Modeling, 2013, 19, 2625-2633.	1.8	2
23	Mechanism for covalent dimerization of pyridine: [4+2] dimerization, an MP2 investigation. Chemical Physics Letters, 2016, 644, 132-137.	2.6	2
24	Computational Insight into the Mechanism of Ruthenium(II)-Catalyzed α-Alkylation of Arylmethyl Nitriles Using Alcohols. Journal of Physical Chemistry A, 2019, 123, 10263-10272.	2.5	2
25	Theoretical elucidation on the mechanism of 1Hâ€1,2,4â€diazaphospholes synthesis from 1,3â€bis (amino)â€2â€phosphaallyl chlorides with hydrazine. Journal of Physical Organic Chemistry, 2019, 32, e3899.	1.9	2
26	Mechanistic Insights into the Chemoâ€Selective Dehydrogenative Silylation of Alkenes Catalyzed by Bis(imino)pyridine Cobalt Complex from DFT Computations. ChemCatChem, 2020, 12, 3890-3899.	3.7	2
27	xmins:xocs="http://www.eisevier.com/xmi/xocs/dtd" xmins:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.elsevier.com/xml/ja/dtd" xmlns:xsi="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struciabib/dtd" xmlns:sb="http://www.elsevier.com/xml/common/xml/common/struciabib/dtd" xmlns:sb="http://www.elsevier.com/xml/common/xml/com/xml/com/xml/com/xml/com/xml/com/xml/com/xml/com/xml/com/xml/com/xml/com/xml/com/xml/com/xml/com/xml/com/xml/com/xml/com/xml/com/xml/com/xml/com/xml/co	2.6	1
	xmins:so= nttp://www.eisevier.com/xmi/common/struct-oib/ata xmins:ce= nttp://www.eisevier. Chemi		