
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4023889/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of friction stir welding parameters on the microstructure and mechanical properties of the dissimilar Al–Cu joints. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 4683-4689.	2.6	316
2	Microstructural evolution of aluminum alloy during friction stir welding under different tool rotation rates and cooling conditions. Journal of Materials Science and Technology, 2019, 35, 972-981.	5.6	70
3	Influence of microstructural evolution on tensile properties of friction stir welded joint of rolled SiCp/AA2009-T351 sheet. Materials & Design, 2013, 51, 199-205.	5.1	57
4	Influence of welding parameter on mechanical properties and fracture behavior of friction stir welded Al–Mg–Sc joints. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 612, 236-245.	2.6	56
5	Pinless Friction Stir Spot Welding of Mg‒3Al‒1Zn Alloy with Zn Interlayer. Journal of Materials Science and Technology, 2016, 32, 76-88.	5.6	55
6	Tensile properties and strain-hardening behaviour of friction stir welded SiCp/AA2009 composite joints. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 608, 1-10.	2.6	54
7	Microstructure and mechanical properties of double-side friction stir welded 6082Al ultra-thick plates. Journal of Materials Science and Technology, 2020, 41, 105-116.	5.6	48
8	Origin of unusual fracture in stirred zone for friction stir welded 2198-T8 Al-Li alloy joints. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 693, 1-13.	2.6	47
9	Achieving superior mechanical properties of selective laser melted AlSi10Mg via direct aging treatment. Journal of Materials Science and Technology, 2022, 108, 226-235.	5.6	45
10	Evolution of local texture and its effect on mechanical properties and fracture behavior of friction stir welded joint of extruded Mg-3Al-1Zn alloy. Materials Characterization, 2017, 128, 14-22.	1.9	44
11	Hot deformation and activation energy of a CNT-reinforced aluminum matrix nanocomposite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 695, 322-331.	2.6	40
12	A comparative research on bobbin tool and conventional friction stir welding of Al-Mg-Si alloy plates. Materials Characterization, 2018, 145, 20-28.	1.9	39
13	Achieving superior superplasticity from lamellar microstructure of a nugget in a friction-stir-welded Ti–6Al–4V joint. Scripta Materialia, 2015, 98, 44-47.	2.6	35
14	Achieving ultra-high strength friction stir welded joints of high nitrogen stainless steel by forced water cooling. Journal of Materials Science and Technology, 2018, 34, 2183-2188.	5.6	31
15	Improving joint performance of friction stir welded wrought Mg alloy by controlling non-uniform deformation behavior. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 707, 426-434.	2.6	29
16	Enhanced combination of mechanical properties and electrical conductivity of a hard state Cu-Cr-Zr alloy via one-step friction stir processing. Journal of Materials Processing Technology, 2021, 288, 116880.	3.1	27
17	Three-dimensional processing maps and microstructural evolution of a CNT-reinforced Al-Cu-Mg nanocomposite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 702, 425-437.	2.6	24
18	Friction stir welding of as-extruded Mg–Al–Zn alloy with higher Al content. Part I: Formation of banded and line structures. Materials Characterization, 2014, 96, 142-150.	1.9	23

#	Article	IF	CITATIONS
19	An approach to enhancement of Mg alloy joint performance by additional pass of friction stir processing. Journal of Materials Processing Technology, 2019, 264, 336-345.	3.1	23
20	Deformation behavior and strengthening mechanisms in a CNT-reinforced bimodal-grained aluminum matrix nanocomposite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 817, 141370.	2.6	23
21	Effect of post weld artificial aging and water cooling on microstructure and mechanical properties of friction stir welded 2198-T8 Al-Li joints. Journal of Materials Science and Technology, 2022, 123, 92-112.	5.6	21
22	Achieving an ultra-high strength in a low alloyed Al alloy via a special structural design. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 755, 28-36.	2.6	20
23	Improved cyclic softening behavior of ultrafine-grained Cu with high microstructural stability. Scripta Materialia, 2019, 166, 10-14.	2.6	19
24	Achieving equal strength joint to parent metal in a friction stir welded ultra-high strength quenching and partitioning steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 793, 139979.	2.6	17
25	Superplastic deformation behavior of lamellar microstructure in a hydrogenated friction stir welded Ti-6Al-4V joint. Journal of Alloys and Compounds, 2019, 787, 1320-1326.	2.8	16
26	Improved strength with good conductivity in Cu–Cr–Zr alloys: Determinant effect of under-aging treatment before rolling and aging. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 848, 143395.	2.6	16
27	Defect formation, microstructure evolution, and mechanical properties of bobbin tool friction–stir welded 2219-T8 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 832, 142414.	2.6	15
28	Dry sliding wear behavior of titanium matrix composites hybrid-reinforced by <i>in situ</i> TiBw and TiCp. Journal of Composite Materials, 2012, 46, 2637-2645.	1.2	10
29	Static spheroidization and its effect on superplasticity of fine lamellae in nugget of a friction stir welded Ti-6Al-4V joint. Journal of Materials Science and Technology, 2022, 119, 1-10.	5.6	10
30	Effect of static annealing on superplastic behavior of a friction stir welded Ti-6Al-4V alloy joint and microstructural evolution during deformation. Journal of Materials Science and Technology, 2022, 130, 112-123.	5.6	10
31	Failure mechanism of nano-structural interfacial layer in Mg matrix composites reinforced with Cf. Composites Part A: Applied Science and Manufacturing, 2022, 154, 106780.	3.8	9
32	Cyclic deformation behavior and fatigue life modeling of CNT-reinforced heterogeneous aluminum-based nanocomposite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 840, 142881.	2.6	9
33	High-cycle fatigue and fracture behavior of double-side friction stir welded 6082Al ultra-thick plates. Engineering Fracture Mechanics, 2020, 226, 106887.	2.0	8
34	Realising equal-strength welding with good conductivity in Cu–Cr–Zr alloy via friction stir welding. Science and Technology of Welding and Joining, 2021, 26, 448-454.	1.5	8
35	Low-temperature superplasticity of nugget zone of friction stir welded Al-Mg alloy joint. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 727, 177-183.	2.6	6
36	Ultrasonic spot welding of dissimilar 2024Al alloy and SiCp/2009Al composite. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2018, , 146442071880913.	0.7	3