
Lars Nilausen Cleemann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/402318/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hollow Spheres of Iron Carbide Nanoparticles Encased in Graphitic Layers as Oxygen Reduction Catalysts. Angewandte Chemie - International Edition, 2014, 53, 3675-3679.	13.8	783
2	Thermal curing of PBI membranes for high temperature PEM fuel cells. Journal of Materials Chemistry, 2012, 22, 5444.	6.7	146
3	Crosslinked Hexafluoropropylidene Polybenzimidazole Membranes with Chloromethyl Polysulfone for Fuel Cell Applications. Advanced Energy Materials, 2013, 3, 622-630.	19.5	146
4	High Molecular Weight Polybenzimidazole Membranes for High Temperature PEMFC. Fuel Cells, 2014, 14, 7-15.	2.4	135
5	Phosphoric acid doped imidazolium polysulfone membranes for high temperature proton exchange membrane fuel cells. Journal of Power Sources, 2012, 205, 114-121.	7.8	110
6	Covalently Cross‣inked Sulfone Polybenzimidazole Membranes with Poly(Vinylbenzyl Chloride) for Fuel Cell Applications. ChemSusChem, 2013, 6, 275-282.	6.8	95
7	Exceptional durability enhancement of PA/PBI based polymer electrolyte membrane fuel cells for high temperature operation at 200 °C. Journal of Materials Chemistry A, 2016, 4, 4019-4024.	10.3	93
8	Polybenzimidazole-Based High-Temperature Polymer Electrolyte Membrane Fuel Cells: New Insights and Recent Progress. Electrochemical Energy Reviews, 2020, 3, 793-845.	25.5	92
9	Highly active and stable Pt electrocatalysts promoted by antimony-doped SnO2 supports for oxygen reduction reactions. Applied Catalysis B: Environmental, 2014, 144, 112-120.	20.2	85
10	Long-term durability of HT-PEM fuel cells based on thermally cross-linked polybenzimidazole. Journal of Power Sources, 2017, 342, 570-578.	7.8	83
11	Tungsten carbide promoted Pd and Pd–Co electrocatalysts for formic acid electrooxidation. Journal of Power Sources, 2012, 219, 106-111.	7.8	76
12	Synthesis of Pt–Rare Earth Metal Nanoalloys. Journal of the American Chemical Society, 2020, 142, 953-961.	13.7	74
13	Roll-to-roll coated PBI membranes for high temperature PEM fuel cells. Energy and Environmental Science, 2012, 5, 6076.	30.8	72
14	Synthesis and properties of poly(aryl sulfone benzimidazole) and its copolymers for high temperature membrane electrolytes for fuel cells. Journal of Materials Chemistry, 2012, 22, 11185.	6.7	72
15	Preparation and operation of gas diffusion electrodes for high-temperature proton exchange membrane fuel cells. Journal of Power Sources, 2007, 172, 278-286.	7.8	66
16	57Fe-Mössbauer spectroscopy and electrochemical activities of graphitic layer encapsulated iron electrocatalysts for the oxygen reduction reaction. Applied Catalysis B: Environmental, 2018, 221, 406-412.	20.2	61
17	Long-Term Durability of PBI-Based HT-PEM Fuel Cells: Effect of Operating Parameters. Journal of the Electrochemical Society, 2018, 165, F3053-F3062.	2.9	56
18	Immunity of the Fe-N-C catalysts to electrolyte adsorption: Phosphate but not perchloric anions. Applied Catalysis B: Environmental, 2018, 234, 357-364.	20.2	49

LARS NILAUSEN CLEEMANN

#	Article	IF	CITATIONS
19	Oxidative degradation of acid doped polybenzimidazole membranes and fuel cell durability in the presence of ferrous ions. Journal of Power Sources, 2013, 238, 516-522.	7.8	44
20	Direct Synthesis of Fe ₃ Câ€Functionalized Graphene by High Temperature Autoclave Pyrolysis for Oxygen Reduction. ChemSusChem, 2014, 7, 2099-2103.	6.8	43
21	Probing phosphoric acid redistribution and anion migration in polybenzimidazole membranes. Electrochemistry Communications, 2017, 82, 21-24.	4.7	33
22	Catalyst evaluation for oxygen reduction reaction in concentrated phosphoric acid at elevated temperatures. Journal of Power Sources, 2018, 375, 77-81.	7.8	31
23	meta-PBI/methylated PBI-OO blend membranes for acid doped HT PEMFC. European Polymer Journal, 2014, 58, 135-143.	5.4	30
24	Determination of Anion Transference Number and Phosphoric Acid Diffusion Coefficient in High Temperature Polymer Electrolyte Membranes. Journal of the Electrochemical Society, 2018, 165, F863-F869.	2.9	29
25	Tetrazole substituted polymers for high temperature polymer electrolyte fuel cells. Journal of Materials Chemistry A, 2015, 3, 14389-14400.	10.3	28
26	Mechanistic Insights into the Synthesis of Platinum–Rare Earth Metal Nanoalloys by a Solid-State Chemical Route. Chemistry of Materials, 2021, 33, 535-546.	6.7	22
27	Direct dimethyl ether fueling of a high temperature polymer fuel cell. Journal of Power Sources, 2012, 211, 173-176.	7.8	20
28	Catalyst Degradation Under Potential Cycling as an Accelerated Stress Test for PBI-Based High-Temperature PEM Fuel Cells—Effect of Humidification. Electrocatalysis, 2018, 9, 302-313.	3.0	20
29	Phosphateâ€Doped Carbon Black as Pt Catalyst Support: Coâ€catalytic Functionality for Dimethyl Ether and Methanol Electroâ€oxidation. ChemElectroChem, 2014, 1, 448-454.	3.4	18
30	Electrochemical probing into the active sites of graphitic-layer encapsulated iron oxygen reduction reaction electrocatalysts. Science Bulletin, 2018, 63, 24-30.	9.0	18
31	Catalyst Degradation in High Temperature Proton Exchange Membrane Fuel Cells Based on Acid Doped Polybenzimidazole Membranes. Fuel Cells, 2013, 13, 822-831.	2.4	17
32	Coupling between creep and redox behavior in nickel - yttria stabilized zirconia observed in-situ by monochromatic neutron imaging. Journal of Power Sources, 2017, 340, 167-175.	7.8	17
33	Three-layered electrolyte membranes with acidÂreservoir for prolonged lifetime of high-temperature polymer electrolyte membrane fuel cells. International Journal of Hydrogen Energy, 2020, 45, 1008-1017.	7.1	17
34	The Electrochemical Behavior of Phosphoricâ€Acidâ€Doped Poly(perfluorosulfonic Acid) Membranes. ChemElectroChem, 2014, 1, 1471-1475.	3.4	15
35	Durability Issues and Status of PBI-Based Fuel Cells. , 2016, , 487-509.		14
36	Flexible sample environment for high resolution neutron imaging at high temperatures in controlled atmosphere. Review of Scientific Instruments, 2015, 86, 125109.	1.3	13

Lars Nilausen Cleemann

#	Article	IF	CITATIONS
37	Phosphoric acid doped polysulfone membranes with aminopyridine pendant groups and imidazole cross-links. European Polymer Journal, 2015, 72, 102-113.	5.4	13
38	Phosphoric Acid Dynamics in High Temperature Polymer Electrolyte Membranes. Journal of the Electrochemical Society, 2020, 167, 134507.	2.9	13
39	Influence of carbon monoxide on the cathode in high-temperature polymer electrolyte membrane fuel cells. International Journal of Hydrogen Energy, 2017, 42, 3309-3315.	7.1	12
40	Revealing the genuine stability of the reference Pt/C electrocatalyst toward the ORR. Electrochimica Acta, 2021, 391, 138963.	5.2	9
41	Encapsulated iron-based oxygen reduction electrocatalysts by high pressure pyrolysis. International Journal of Hydrogen Energy, 2017, 42, 22887-22896.	7.1	8
42	Influence of oxygen on the cathode in HT-PEM fuel cells. International Journal of Hydrogen Energy, 2019, 44, 20379-20388.	7.1	6
43	Platinum Iron Intermetallic Nanoparticles Supported on Carbon Formed Inâ€Situ by Highâ€Pressure Pyrolysis for Efficient Oxygen Reduction. ChemCatChem, 2016, 8, 3131-3136.	3.7	4
44	High-Temperature Polymer Electrolyte Membrane Fuel Cells. Nanostructure Science and Technology, 2019, , 45-79.	0.1	3
45	Catalytic Reduction of NO by Methane Using a Ptâ^•Câ^•polybenzimidazoleâ^•Ptâ^•C Fuel Cell. Journal of the Electrochemical Society, 2007, 154, E84.	2.9	2
46	A Direct DME High Temperature PEM Fuel Cell. ECS Transactions, 2013, 50, 869-876.	0.5	2
47	Innenrücktitelbild: Hollow Spheres of Iron Carbide Nanoparticles Encased in Graphitic Layers as Oxygen Reduction Catalysts (Angew. Chem. 14/2014). Angewandte Chemie, 2014, 126, 3823-3823.	2.0	2
48	Tailoring the particle sizes of Pt5Ce alloy nanoparticles for the oxygen reduction reaction. , 2022, 1, 100025.		2
49	Electrochemical promotion of catalytic reactions with Pt/C (or Pt/Ru/C)//PBI catalysts. Topics in Catalysis, 2007, 44, 427-434.	2.8	1
50	The 3rd CARISMA International Conference on Medium and High Temperature Proton Exchange Membrane Fuel Cells. Platinum Metals Review, 2013, 57, 173-176.	1.2	1
51	Alkaline Electrolysis with an Ion-Solvating Membrane. ECS Meeting Abstracts, 2018, , .	0.0	0
52	Preparation of Pt3y Nanoparticles Supported on Carbon. ECS Meeting Abstracts, 2018, , .	0.0	0
53	Synthesis of Pt-Rare Earth Metal Alloy Nanocatalysts. ECS Meeting Abstracts, 2019, , .	0.0	0
54	Preparation of Various Platinum Rare Earth Metal Alloy Nanoparticles and Their ORR Performance. ECS Meeting Abstracts, 2019, , .	0.0	0

#	Article	IF	CITATIONS
55	A Systematic Investigation of Carbon Pretreatment for the Synthesis of Platinum Nano-Catalysts for Oxygen Reduction Reaction. ECS Meeting Abstracts, 2022, MA2022-01, 1448-1448.	0.0	0
56	ORR Activity and Surface Strain Relations of Commercial Pt Alloy Catalysts. ECS Meeting Abstracts, 2022, MA2022-01, 1530-1530.	0.0	0
57	Synthesis of Platinum-Rare Earth Metal Alloy Catalysts for Proton Exchange Membrane Fuel Cells. ECS Meeting Abstracts, 2022, MA2022-01, 1451-1451.	0.0	Ο