Sophie Brachat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4023099/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	STING regulates peripheral nerve regeneration and colony stimulating factor 1 receptor (CSF1R) processing in microglia. IScience, 2021, 24, 103434.	4.1	5
2	Ten simple rules to power drug discovery with data science. PLoS Computational Biology, 2020, 16, e1008126.	3.2	14
3	Modulation of Microglia by Voluntary Exercise or CSF1R Inhibition Prevents Age-Related Loss of Functional Motor Units. Cell Reports, 2019, 29, 1539-1554.e7.	6.4	36
4	Continuous Digital Monitoring of Walking Speed in Frail Elderly Patients: Noninterventional Validation Study and Longitudinal Clinical Trial. JMIR MHealth and UHealth, 2019, 7, e15191.	3.7	39
5	GDF11 Increases with Age and Inhibits Skeletal Muscle Regeneration. Cell Metabolism, 2015, 22, 164-174.	16.2	439
6	Expansion of Human Mesenchymal Stromal Cells from Fresh Bone Marrow in a 3D Scaffold-Based System under Direct Perfusion. PLoS ONE, 2014, 9, e102359.	2.5	81
7	An Antibody Blocking Activin Type II Receptors Induces Strong Skeletal Muscle Hypertrophy and Protects from Atrophy. Molecular and Cellular Biology, 2014, 34, 606-618.	2.3	239
8	High-resolution chemical dissection of a model eukaryote reveals targets, pathways and gene functions. Microbiological Research, 2014, 169, 107-120.	5.3	142
9	Genomic and Proteomic Profiling Reveals Reduced Mitochondrial Function and Disruption of the Neuromuscular Junction Driving Rat Sarcopenia. Molecular and Cellular Biology, 2013, 33, 194-212.	2.3	228
10	Genetic circuitry of <i>Survival motor neuron</i> , the gene underlying spinal muscular atrophy. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2371-80.	7.1	37
11	Genomic Profiling Reveals That Transient Adipogenic Activation Is a Hallmark of Mouse Models of Skeletal Muscle Regeneration. PLoS ONE, 2013, 8, e71084.	2.5	63
12	Blockade of the Activin Receptor IIB Activates Functional Brown Adipogenesis and Thermogenesis by Inducing Mitochondrial Oxidative Metabolism. Molecular and Cellular Biology, 2012, 32, 2871-2879.	2.3	93
13	Contribution of Horizontal Gene Transfer to the Evolution of <i>Saccharomyces cerevisiae</i> . Eukaryotic Cell, 2005, 4, 1102-1115.	3.4	224
14	Phosphatidylinositol-dependent phospholipases C Plc2 and Plc3 of Candida albicans are dispensable for morphogenesis and host–pathogen interaction. Research in Microbiology, 2005, 156, 822-829.	2.1	10
15	The <i>Ashbya gossypii</i> Genome as a Tool for Mapping the Ancient <i>Saccharomyces cerevisiae</i> Genome. Science, 2004, 304, 304-307.	12.6	599
16	Functional profiling of the Saccharomyces cerevisiae genome. Nature, 2002, 418, 387-391.	27.8	3,938