Zhikan Yao

List of Publications by Citations

Source: https://exaly.com/author-pdf/4022831/zhikan-yao-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

23 783 13 24 g-index

24 1,196 9.1 4.49 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
23	Tannic Acid/Fe Nanoscaffold for Interfacial Polymerization: Toward Enhanced Nanofiltration Performance. <i>Environmental Science & Environmental Science</i>	10.3	162
22	Does Hydrophilic Polydopamine Coating Enhance Membrane Rejection of Hydrophobic Endocrine-Disrupting Compounds?. <i>Environmental Science and Technology Letters</i> , 2016 , 3, 332-338	11	84
21	Tuning roughness features of thin film composite polyamide membranes for simultaneously enhanced permeability, selectivity and anti-fouling performance. <i>Journal of Colloid and Interface Science</i> , 2019 , 540, 382-388	9.3	75
20	A One-Step Rapid Assembly of Thin Film Coating Using Green Coordination Complexes for Enhanced Removal of Trace Organic Contaminants by Membranes. <i>Environmental Science & Enphanology</i> , 2017 , 51, 12638-12643	10.3	66
19	A highly selective surface coating for enhanced membrane rejection of endocrine disrupting compounds: Mechanistic insights and implications. <i>Water Research</i> , 2017 , 121, 197-203	12.5	55
18	Non-Polyamide Based Nanofiltration Membranes Using Green Metal-Organic Coordination Complexes: Implications for the Removal of Trace Organic Contaminants. <i>Environmental Science & Environmental Science & Environmental Science</i>	10.3	52
17	Dissecting the Role of Substrate on the Morphology and Separation Properties of Thin Film Composite Polyamide Membranes: Seeing Is Believing. <i>Environmental Science & amp; Technology</i> , 2020 , 54, 6978-6986	10.3	47
16	One-step tailoring surface roughness and surface chemistry to prepare superhydrophobic polyvinylidene fluoride (PVDF) membranes for enhanced membrane distillation performances. <i>Journal of Colloid and Interface Science</i> , 2019 , 553, 99-107	9.3	43
15	Tailoring Polyamide Rejection Layer with Aqueous Carbonate Chemistry for Enhanced Membrane Separation: Mechanistic Insights, Chemistry-Structure-Property Relationship, and Environmental Implications. <i>Environmental Science & Enp.</i> 7 (2019), 53, 9764-9770	10.3	40
14	Fast polydopamine coating on reverse osmosis membrane: Process investigation and membrane performance study. <i>Journal of Colloid and Interface Science</i> , 2019 , 535, 239-244	9.3	35
13	Fabrication of a novel and green thin-film composite membrane containing nanovoids for water purification. <i>Journal of Membrane Science</i> , 2019 , 570-571, 314-321	9.6	32
12	Composition and properties of porous blend membranes containing tertiary amine based amphiphilic copolymers with different sequence structures. <i>Journal of Colloid and Interface Science</i> , 2015 , 437, 124-131	9.3	25
11	Highly permeable and highly selective ultrathin film composite polyamide membranes reinforced by reactable polymer chains. <i>Journal of Colloid and Interface Science</i> , 2019 , 552, 418-425	9.3	16
10	Hollow nanosphere construction of covalent organic frameworks for catalysis: (Pd/C)@TpPa COFs in Suzuki coupling reaction. <i>Journal of Colloid and Interface Science</i> , 2021 , 591, 273-280	9.3	11
9	Highly selective separation and resource recovery using forward osmosis membrane assembled by polyphenol network. <i>Journal of Membrane Science</i> , 2020 , 611, 118305	9.6	8
8	Nanofiltration for drinking water treatment: a review. <i>Frontiers of Chemical Science and Engineering</i> , 2021 , 1-18	4.5	8
7	Constructing a selective blocked-nanolayer on nanofiltration membrane via surface-charge inversion for promoting Li+ permselectivity over Mg2+. <i>Journal of Membrane Science</i> , 2021 , 635, 119504	4 ^{9.6}	6

LIST OF PUBLICATIONS

6	High-Efficiency Capture and Recovery of Anionic Perfluoroalkyl Substances from Water Using PVA/PDDA Nanofibrous Membranes with Near-Zero Energy Consumption. <i>Environmental Science and Technology Letters</i> , 2021 , 8, 350-355	11	4
5	Tweak in Puzzle: Tailoring Membrane Chemistry and Structure toward Targeted Removal of Organic Micropollutants for Water Reuse. <i>Environmental Science and Technology Letters</i> ,	11	4
4	A critical review of hemoperfusion adsorbents: materials, functionalization and matrix structure selection. <i>Materials Advances</i> , 2022 , 3, 918-930	3.3	3
3	High proton selectivity membrane based on the keto-linked cationic covalent organic framework for acid recovery. <i>Journal of Membrane Science</i> , 2021 , 640, 119800	9.6	3
3		9.6 9.3	3