Stefan Pollmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/402237/publications.pdf

Version: 2024-02-01

124 papers 4,537 citations

32 h-index 63 g-index

132 all docs 132 docs citations

times ranked

132

4908 citing authors

#	Article	IF	CITATIONS
1	Prefrontal cortex activation in task switching: an event-related fMRI study. Cognitive Brain Research, 2000, 9, 103-109.	3.0	616
2	PyMVPA: a Python Toolbox for Multivariate Pattern Analysis of fMRI Data. Neuroinformatics, 2009, 7, 37-53.	2.8	435
3	D1- Versus D2-Receptor Modulation of Visuospatial Working Memory in Humans. Journal of Neuroscience, 1998, 18, 2720-2728.	3.6	336
4	A high-resolution 7-Tesla fMRI dataset from complex natural stimulation with an audio movie. Scientific Data, 2014, 1, 140003.	5. 3	139
5	Covert Reorienting and Inhibition of Return: An Event-Related fMRI Study. Journal of Cognitive Neuroscience, 2002, 14, 127-144.	2.3	138
6	A universal role of the ventral striatum in reward-based learning: Evidence from human studies. Neurobiology of Learning and Memory, 2014, 114, 90-100.	1.9	135
7	Dichotic listening in patients with splenial and nonsplenial callosal lesions Neuropsychology, 2002, 16, 56-64.	1.3	119
8	A Fronto-Posterior Network Involved in Visual Dimension Changes. Journal of Cognitive Neuroscience, 2000, 12, 480-494.	2.3	113
9	Separating distractor rejection and target detection in posterior parietal cortex—an event-related fMRI study of visual marking. NeuroImage, 2003, 18, 310-323.	4.2	112
10	PyMVPA: a unifying approach to the analysis of neuroscientific data. Frontiers in Neuroinformatics, 2009, 3, 3.	2.5	98
11	Retinotopic activation in response to subjective contours in primary visual cortex. Frontiers in Human Neuroscience, 2008, 2, 1-7.	2.0	96
12	Object working memory and visuospatial processing: functional neuroanatomy analyzed by event-related fMRI. Experimental Brain Research, 2000, 133, 12-22.	1.5	92
13	Ontologies for neuroscience: What are they and what are they good for?. Frontiers in Neuroscience, 2009, 3, 60-7.	2.8	87
14	ERP and fMRI correlates of endogenous and exogenous focusing of visual-spatial attention. European Journal of Neuroscience, 2006, 23, 2511-2521.	2.6	80
15	Investigating the brain basis of facial expression perception using multi-voxel pattern analysis. Cortex, 2015, 69, 131-140.	2.4	76
16	Comparing the Neural Basis of Monetary Reward and Cognitive Feedback during Information-Integration Category Learning. Journal of Neuroscience, 2010, 30, 47-55.	3.6	73
17	Misleading contextual cues: How do they affect visual search?. Psychological Research, 2009, 73, 212-221.	1.7	68
18	Striatal activations signal prediction errors on confidence in the absence of external feedback. Neurolmage, 2012, 59, 3457-3467.	4.2	65

#	Article	IF	Citations
19	fMRI Reveals a Common Neural Substrate of Illusory and Real Contours in V1 after Perceptual Learning. Journal of Cognitive Neuroscience, 2005, 17, 1553-1564.	2.3	61
20	Dichotic listening in patients with splenial and nonsplenial callosal lesions Neuropsychology, 2002, 16, 56-64.	1.3	50
21	Event-related fMRI: Comparison of conditions with varying BOLD overlap. Human Brain Mapping, 2000, 9, 26-37.	3.6	49
22	Anterior Prefrontal Cortex Contributions to Attention Control. Experimental Psychology, 2004, 51, 270-278.	0.7	49
23	Contextual cueing under working memory load: Selective interference of visuospatial load with expression of learning. Attention, Perception, and Psychophysics, 2013, 75, 1103-1117.	1.3	49
24	Gradual acquisition of visuospatial associative memory representations via the dorsal precuneus. Human Brain Mapping, 2019, 40, 1554-1570.	3.6	49
25	Switching between Dimensions, Locations, and Responses: The Role of the Left Frontopolar Cortex. Neurolmage, 2001, 14, S118-S124.	4.2	48
26	Cortical evidence for negative search templates. Visual Cognition, 2017, 25, 278-290.	1.6	45
27	Cortical areas and the control of self-determined finger movements. NeuroReport, 1998, 9, 3171-3176.	1.2	44
28	The neural basis of the bilateral distribution advantage. Experimental Brain Research, 2003, 153, 322-333.	1.5	42
29	Medial temporal lobe-dependent repetition suppression and enhancement due to implicit vs. explicit processing of individual repeated search displays. Frontiers in Human Neuroscience, 2012, 6, 272.	2.0	38
30	Memory under pressure: Secondary-task effects on contextual cueing of visual search. Journal of Vision, 2013, 13, 6-6.	0.3	38
31	Selective and interactive neural correlates of visual dimension changes and response changes. Neurolmage, 2006, 30, 254-265.	4.2	37
32	Dorsal and ventral working memory-related brain areas support distinct processes in contextual cueing. Neurolmage, 2013, 67, 363-374.	4.2	34
33	Contextual cueing impairment in patients with age-related macular degeneration. Journal of Vision, 2013, 13, 28-28.	0.3	34
34	Use of Short Intertrial Intervals in Single-Trial Experiments: A 3T fMRI-Study. NeuroImage, 1998, 8, 327-339.	4.2	32
35	Simulated loss of foveal vision eliminates visual search advantage in repeated displays. Frontiers in Human Neuroscience, 2012, 6, 134.	2.0	31
36	Neural correlates of visual dimension weighting. Visual Cognition, 2006, 14, 877-897.	1.6	30

#	Article	IF	CITATIONS
37	A pop-out induced extinction-like phenomenon in neurologically intact subjects. Neuropsychologia, 1996, 34, 413-425.	1.6	29
38	Differential activation of object-selective visual areas by passive viewing of pictures and words. Cognitive Brain Research, 2005, 24, 702-714.	3.0	29
39	The right temporo-parietal junction contributes to visual feature binding. Neurolmage, 2014, 101, 289-297.	4.2	28
40	Auditory Target Detection in Dichotic Listening Involves the Orbitofrontal and Hippocampal Paralimbic Belts. Cerebral Cortex, 2004, 14, 903-913.	2.9	26
41	Redundancy gains for visual search after complete commissurotomy Neuropsychology, 1999, 13, 246-258.	1.3	25
42	Anterior prefrontal involvement in implicit contextual change detection. Frontiers in Human Neuroscience, 2009, 3, 28.	2.0	25
43	Neural structures involved in visual search guidance by reward-enhanced contextual cueing of the target location. Neurolmage, 2016, 124, 887-897.	4.2	25
44	No evidence for enhanced distractor template representation in early visual cortex. Cortex, 2018, 108, 279-282.	2.4	25
45	Neural correlates of binding features within- or cross-dimensions in visual conjunction search: An fMRI study. NeuroImage, 2011, 57, 235-241.	4.2	24
46	Shift of activity from attention to motor-related brain areas during visual learning. Nature Neuroscience, 2005, 8, 1494-1496.	14.8	23
47	Central and peripheral vision loss differentially affects contextual cueing in visual search Journal of Experimental Psychology: Learning Memory and Cognition, 2015, 41, 1485-1496.	0.9	23
48	Biasing Allocations of Attention via Selective Weighting of Saliency Signals: Behavioral and Neuroimaging Evidence for the Dimension-Weighting Account. Current Topics in Behavioral Neurosciences, 2018, 41, 87-113.	1.7	23
49	Visual Search Facilitation in Repeated Displays Depends on Visuospatial Working Memory. Experimental Psychology, 2012, 59, 47-54.	0.7	23
50	Selective Visual Dimension Weighting Deficit after Left Lateral Frontopolar Lesions. Journal of Cognitive Neuroscience, 2007, 19, 365-375.	2.3	22
51	Early implicit contextual change detection in anterior prefrontal cortex. Brain Research, 2009, 1263, 87-92.	2.2	22
52	Division of labor between the hemispheres for complex but not simple tasks: An implemented connectionist model Journal of Experimental Psychology: General, 2003, 132, 379-399.	2.1	21
53	The effect of acquisition resolution on orientation decoding from V1 BOLD fMRI at 7 T. Neurolmage, 2017, 148, 64-76.	4.2	20
54	The role of the corpus callosum in visual orienting: importance of interhemispheric visual transfer. Neuropsychologia, 1998, 36, 763-774.	1.6	19

#	Article	IF	CITATIONS
55	Evidence for feature binding in the superior parietal lobule. NeuroImage, 2013, 68, 173-180.	4.2	19
56	Adaptation to recent conflict in the classical color-word Stroop-task mainly involves facilitation of processing of task-relevant information. Frontiers in Human Neuroscience, 2015, 9, 88.	2.0	19
57	Extinction-like Effects in Normals: Independence of Localization and Response Selection. Brain and Cognition, 2000, 44, 324-341.	1.8	17
58	Interhemispheric resource sharing: Decreasing benefits with increasing processing efficiency. Brain and Cognition, 2005, 58, 183-192.	1.8	17
59	Impairment of visual memory for objects in natural scenes by simulated central scotomata. Journal of Vision, 2016, 16, 6.	0.3	17
60	Frontopolar Resource Allocation in Human and Nonhuman Primates. Trends in Cognitive Sciences, 2016, 20, 84-86.	7.8	17
61	Anomalous visual experience is linked to perceptual uncertainty and visual imagery vividness. Psychological Research, 2021, 85, 1848-1865.	1.7	17
62	Neural basis of interaction between target presence and display homogeneity in visual search: An fMRI study. Neurolmage, 2009, 45, 993-1001.	4.2	16
63	Working memory dependence of spatial contextual cueing for visual search. British Journal of Psychology, 2019, 110, 372-380.	2.3	16
64	Illusory Contours Do Not Pass through the "Blind Spot― Journal of Cognitive Neuroscience, 2007, 19, 91-101.	2.3	14
65	Statistical learning analysis in neuroscience: aiming for transparency. Frontiers in Neuroscience, 2010, 4, 38.	2.8	13
66	Redundancy gains for visual search after complete commissurotomy Neuropsychology, 1999, 13, 246-258.	1.3	13
67	Determining subprocesses of visual feature search with reaction time models. Psychological Research, 2003, 67, 80-105.	1.7	12
68	Splenial Lesions Lead to Supramodal Target Detection Deficits Neuropsychology, 2004, 18, 710-718.	1.3	12
69	Repeated Contextual Search Cues Lead to Reduced BOLD-Onset Times in Early Visual and Left Inferior Frontal Cortex. Open Neuroimaging Journal, 2010, 4, 9-15.	0.2	12
70	Application of double voxel functional spectroscopy to event-related cognitive experiments. Magnetic Resonance in Medicine, 1999, 41, 217-223.	3.0	10
71	Anterior Prefrontal Contributions to Implicit Attention Control. Brain Sciences, 2012, 2, 254-266.	2.3	10
72	Differential brain mechanisms for processing distracting information in taskâ€relevant and â€irrelevant dimensions in visual search. Human Brain Mapping, 2019, 40, 110-124.	3.6	10

#	Article	IF	CITATIONS
73	Putamen Activation Represents an Intrinsic Positive Prediction Error Signal for Visual Search in Repeated Configurations. Open Neuroimaging Journal, 2016, 10, 126-138.	0.2	10
74	Neural basis of redundancy effects in visual object categorization. Neuroscience Letters, 2007, 412, 123-128.	2.1	9
75	Deficits in Subprocesses of Visual Feature Search after Frontal, Parietal, and Temporal Brain Lesions—A Modeling Approach. Journal of Cognitive Neuroscience, 2010, 22, 1399-1424.	2.3	9
76	Reward modulation of contextual cueing: Repeated context overshadows repeated target location. Attention, Perception, and Psychophysics, 2017, 79, 1871-1877.	1.3	9
77	Task relevance modulates the cortical representation of feature conjunctions in the target template. Scientific Reports, 2017, 7, 4514.	3.3	9
78	Frontal cortex differentiates between free and imposed target selection in multiple-target search. Neurolmage, 2019, 202, 116133.	4.2	9
79	A Unified Structural-Attentional Framework for Dichotic Listening. , 2010, , 441-468.		9
80	Dissociation of memory retrieval and search processes: An event-related fMRI study. Microscopy Research and Technique, 2000, 51, 29-38.	2.2	8
81	A behavioral task for the validation of a gaze-contingent simulated scotoma. Behavior Research Methods, 2013, 45, 1313-1321.	4.0	8
82	Visual memory for objects following foveal vision loss Journal of Experimental Psychology: Learning Memory and Cognition, 2015, 41, 1471-1484.	0.9	8
83	Individual face- and house-related eye movement patterns distinctively activate FFA and PPA. Nature Communications, 2019, 10, 5532.	12.8	8
84	The interactive effects of reward expectation and emotional interference on cognitive conflict control: An ERP study. Physiology and Behavior, 2021, 234, 113369.	2.1	8
85	The contribution of spatial position and rotated global configuration to contextual cueing. Attention, Perception, and Psychophysics, 2019, 81, 2590-2596.	1.3	7
86	Spatial band-pass filtering aids decoding musical genres from auditory cortex 7T fMRI. F1000Research, 2018, 7, 142.	1.6	7
87	Changes of the Relative Severity of Naming, Fluency and Recall Impairment in the Course of Dementia of the Alzheimer Type. Dementia and Geriatric Cognitive Disorders, 1995, 6, 252-257.	1.5	6
88	Left and right occipital cortices differ in their response to spatial cueing. Neurolmage, 2003, 18, 273-283.	4.2	6
89	Cross-task perceptual learning of object recognition in simulated retinal implant perception. Journal of Vision, 2018, 18, 22.	0.3	6
90	Intact Contextual Cueing for Search in Realistic Scenes with Simulated Central or Peripheral Vision Loss. Translational Vision Science and Technology, 2020, 9, 15.	2.2	6

#	Article	IF	CITATIONS
91	Perception modulates auditory cortex activation. NeuroReport, 2006, 17, 1779-1782.	1.2	5
92	Functional asymmetry and effective connectivity of the auditory system during speech perception is modulated by the place of articulation of the consonant- A 7T fMRI study. Frontiers in Psychology, 2014, 5, 549.	2.1	5
93	Not scene learning, but attentional processing is superior in team sport athletes and action video game players. Psychological Research, 2020, 84, 1028-1038.	1.7	5
94	Frontopolar activity carries feature information of novel stimuli during unconscious reweighting of selective attention. Cortex, 2022, 153, 146-165.	2.4	5
95	Editorial. Experimental Psychology, 2004, 51, 229-230.	0.7	4
96	Ultra high-field (7 T) multi-resolution fMRI data for orientation decoding in visual cortex. Data in Brief, 2017, 13, 219-222.	1.0	4
97	Spatial band-pass filtering aids decoding musical genres from auditory cortex 7T fMRI. F1000Research, 2018, 7, 142.	1.6	4
98	Contextual cueing in older adults: Slow initial learning but flexible use of distractor configurations. Visual Cognition, 2019, 27, 563-575.	1.6	4
99	Contextual-Cueing beyond the Initial Field of View—A Virtual Reality Experiment. Brain Sciences, 2020, 10, 446.	2.3	4
100	Alzheimer's Disease: Is There Evidence of Phenomenological Subtypes?. Dementia and Geriatric Cognitive Disorders, 1992, 3, 320-327.	1.5	3
101	Spatial Contextual Cueing, Assessed in a Computerized Task, Is Not a Limiting Factor for Expert Performance in the Domain of Team Sports or Action Video Game Playing. Journal of Cognitive Enhancement: Towards the Integration of Theory and Practice, 2019, 3, 281-292.	1.6	3
102	Object working memory and visuospatial processing: functional neuroanatomy analyzed by event-related fMRI., 2000, , 12-22.		3
103	Perceptual Learning of Object Recognition in Simulated Retinal Implant Perception – The Effect of Video Training. Translational Vision Science and Technology, 2021, 10, 22.	2.2	3
104	Prediction of higher visual function in macular degeneration with multifocal electroretinogram and multifocal visual evoked potential. Ophthalmic and Physiological Optics, 2014, 34, 540-551.	2.0	2
105	Disoriented Behavior in Familiar Surroundings Is Strongly Associated with Perceptual Impairment in Mild Alzheimer's Disease. Dementia and Geriatric Cognitive Disorders, 1991, 2, 259-261.	1.5	1
106	Preserved Contextual Cueing in Realistic Scenes in Patients with Age-Related Macular Degeneration. Brain Sciences, 2020, 10, 941.	2.3	1
107	Feature-Based Attentional Weighting and Re-weighting in the Absence of Visual Awareness. Frontiers in Human Neuroscience, 2021, 15, 610347.	2.0	1
108	Egocentric and Allocentric Reference Frames Can Flexibly Support Contextual Cueing. Frontiers in Psychology, 2021, 12, 711890.	2.1	1

#	Article	IF	Citations
109	Perception Enhancement for Bionic Vision - Preliminary Study on Object Classification with Subretinal Implants. , $2018, , .$		1
110	Severity of Symptoms and Rate of Progression in Alzheimer's Disease: A Comparison of Cases with Early and Late Onset. Dementia and Geriatric Cognitive Disorders, 1992, 3, 21-24.	1.5	0
111	Stability of Cognitive Symptoms in Dementia of the Alzheimer Type. Dementia and Geriatric Cognitive Disorders, 1992, 3, 328-334.	1.5	O
112	Is there a structural limit to â€~branch' recursively between more than two tasks?. Psychological Research, 2010, 74, 327-336.	1.7	0
113	Sensory category learning. Nature Human Behaviour, 2018, 2, 448-449.	12.0	O
114	Contextual Cueing in Virtual (Reality) Environments. Neuromethods, 2019, , 73-103.	0.3	0
115	Feedback Dependence of Dopaminergic Involvement in an Information-Integration Task. Frontiers in Computational Neuroscience, 0, 4, .	2.1	0
116	Feedback Dependence of Dopaminergic Involvement in an Information-Integration Task. Frontiers in Behavioral Neuroscience, 1970, , .	2.0	0
117	Foveal vision loss interferes with visual search guidance by learned spatial contexts in contextual cueing. Journal of Vision, 2015, 15, 1109.	0.3	0
118	Task relevance modulates the representation of feature dimensions in the target template. Journal of Vision, 2016, 16, 691.	0.3	0
119	Peripheral vision contributions to contextual cueing. Journal of Vision, 2016, 16, 987.	0.3	0
120	Cortical evidence for negative search templates. Journal of Vision, 2017, 17, 928.	0.3	0
121	The visual representation of templates for rejection. Journal of Vision, 2018, 18, 1222.	0.3	0
122	Decoding face- and house-associated eye-movement patterns in FFA and PPA. Journal of Vision, 2018, 18, 1158.	0.3	0
123	Dissociating proactive from reactive control in multiple-target visual search. Journal of Vision, 2018, 18, 982.	0.3	0
124	Persistent and flexible perceptual training effect in simulated retinal implant vision. Journal of Vision, 2019, 19, 27a.	0.3	0