Changqing Su

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4022109/publications.pdf Version: 2024-02-01

CHANCOINC SU

#	Article	IF	CITATIONS
1	Design strategies and application progress of therapeutic exosomes. Theranostics, 2019, 9, 1015-1028.	4.6	295
2	Anti-tumor activities of matrine and oxymatrine: literature review. Tumor Biology, 2014, 35, 5111-5119.	0.8	186
3	MicroRNA-21 suppresses PTEN and hSulf-1 expression and promotes hepatocellular carcinoma progression through AKT/ERK pathways. Cancer Letters, 2013, 337, 226-236.	3.2	165
4	Targeting MicroRNAs in Cancer Gene Therapy. Genes, 2017, 8, 21.	1.0	147
5	Downregulation of HtrA1 Promotes Resistance to Anoikis and Peritoneal Dissemination of Ovarian Cancer Cells. Cancer Research, 2010, 70, 3109-3118.	0.4	143
6	Potential Anti-Cancer Activities and Mechanisms of Costunolide and Dehydrocostuslactone. International Journal of Molecular Sciences, 2015, 16, 10888-10906.	1.8	90
7	Survivin in survival of hepatocellular carcinoma. Cancer Letters, 2016, 379, 184-190.	3.2	88
8	Phospholipase A2 superfamily in cancer. Cancer Letters, 2021, 497, 165-177.	3.2	85
9	OCT4 increases BIRC5 and CCND1 expression and promotes cancer progression in hepatocellular carcinoma. BMC Cancer, 2013, 13, 82.	1.1	70
10	Immune Gene–Viral Therapy with Triplex Efficacy Mediated by Oncolytic Adenovirus Carrying an Interferon-γ Gene Yields Efficient Antitumor Activity in Immunodeficient and Immunocompetent Mice. Molecular Therapy, 2006, 13, 918-927.	3.7	64
11	Cell division cycle 20 (CDC20) drives prostate cancer progression via stabilization of β-catenin in cancer stem-like cells. EBioMedicine, 2019, 42, 397-407.	2.7	63
12	OCT4 Positively Regulates Survivin Expression to Promote Cancer Cell Proliferation and Leads to Poor Prognosis in Esophageal Squamous Cell Carcinoma. PLoS ONE, 2012, 7, e49693.	1.1	63
13	Costunolide and dehydrocostuslactone combination treatment inhibit breast cancer by inducing cell cycle arrest and apoptosis through c-Myc/p53 and AKT/14-3-3 pathway. Scientific Reports, 2017, 7, 41254.	1.6	60
14	A novel triple-regulated oncolytic adenovirus carrying <i>p53</i> gene exerts potent antitumor efficacy on common human solid cancers. Molecular Cancer Therapeutics, 2008, 7, 1598-1603.	1.9	58
15	Effective Gene-Viral Therapy for Telomerase-Positive Cancers by Selective Replicative-Competent Adenovirus Combining with Endostatin Gene. Cancer Research, 2004, 64, 5390-5397.	0.4	57
16	Matrine derivative WM130 inhibits hepatocellular carcinoma by suppressing EGFR/ERK/MMP-2 and PTEN/AKT signaling pathways. Cancer Letters, 2015, 368, 126-134.	3.2	56
17	Increased Safety with Preserved Antitumoral Efficacy on Hepatocellular Carcinoma with Dual-Regulated Oncolytic Adenovirus. Clinical Cancer Research, 2006, 12, 6523-6531.	3.2	48
18	P16 reactivation induces anoikis and exhibits antitumour potency by downregulating Akt/survivin signalling in hepatocellular carcinoma cells. Gut, 2011, 60, 710-721.	6.1	41

CHANGQING SU

#	Article	IF	CITATIONS
19	Small molecule with big role: MicroRNAs in cancer metastatic microenvironments. Cancer Letters, 2014, 344, 147-156.	3.2	39
20	An Artificially Designed Interfering IncRNA Expressed by Oncolytic Adenovirus Competitively Consumes OncomiRs to Exert Antitumor Efficacy in Hepatocellular Carcinoma. Molecular Cancer Therapeutics, 2016, 15, 1436-1451.	1.9	39
21	Multidisciplinary management of hepatocellular carcinoma with portal vein tumor thrombus - Eastern Hepatobiliary Surgical Hospital consensus statement. Oncotarget, 2016, 7, 40816-40829.	0.8	38
22	Survivin-targeted drug screening platform identifies a matrine derivative WM-127 as a potential therapeutics against hepatocellular carcinoma. Cancer Letters, 2018, 425, 54-64.	3.2	38
23	Survivin promoter-regulated oncolytic adenovirus with Hsp70 gene exerts effective antitumor efficacy in gastric cancer immunotherapy. Oncotarget, 2014, 5, 150-160.	0.8	34
24	CEA promoter-regulated oncolytic adenovirus-mediated Hsp70 expression in immune gene therapy for pancreatic cancer. Cancer Letters, 2012, 319, 154-163.	3.2	31
25	Inhibitory effect of Survivin promoterâ€regulated oncolytic adenovirus carrying P53 gene against gallbladder cancer. Molecular Oncology, 2011, 5, 545-554.	2.1	30
26	Gene-Viral Cancer Therapy Using Dual-Regulated Oncolytic Adenovirus with Antiangiogenesis Gene for Increased Efficacy. Molecular Cancer Research, 2008, 6, 568-575.	1.5	29
27	Transcription factor OCT4 promotes cell cycle progression by regulating CCND1 expression in esophageal carcinoma. Cancer Letters, 2014, 354, 77-86.	3.2	29
28	hSulf-1 Gene Exhibits Anticancer Efficacy through Negatively Regulating VEGFR-2 Signaling in Human Cancers. PLoS ONE, 2011, 6, e23274.	1.1	25
29	Simultaneous overexpression of miR-126 and miR-34a induces a superior antitumor efficacy in pancreatic adenocarcinoma. OncoTargets and Therapy, 2017, Volume 10, 5591-5604.	1.0	24
30	An oncolytic adenovirus regulated by a radiationâ€inducible promoter selectively mediates hSulfâ€1 gene expression and mutually reinforces antitumor activity of I ¹³¹ â€metuximab in hepatocellular carcinoma. Molecular Oncology, 2013, 7, 346-358.	2.1	23
31	Transcriptional factor OCT4 promotes esophageal cancer metastasis by inducing epithelial-mesenchymal transition through VEGF-C/VEGFR-3 signaling pathway. Oncotarget, 2017, 8, 71933-71945.	0.8	22
32	PPP2R5A: A multirole protein phosphatase subunit in regulating cancer development. Cancer Letters, 2018, 414, 222-229.	3.2	19
33	Toxicology Profiles of a Novel p53-Armed Replication-Competent Oncolytic Adenovirus in Rodents, Felids, and Nonhuman Primates. Toxicological Sciences, 2008, 106, 242-250.	1.4	18
34	E2F Promoter-Regulated Oncolytic Adenovirus with p16 Gene Induces Cell Apoptosis and Exerts Antitumor Effect on Gastric Cancer. Digestive Diseases and Sciences, 2009, 54, 1425-1431.	1.1	18
35	Extracellular vesicles-derived OncomiRs mediate communication between cancer cells and cancer-associated hepatic stellate cells in hepatocellular carcinoma microenvironment. Carcinogenesis, 2020, 41, 223-234.	1.3	18
36	Sulfatase 1 (hSulf-1) reverses basic fibroblast growth factor-stimulated signaling and inhibits growth of hepatocellular carcinoma in animal model. Oncotarget, 2014, 5, 5029-5039.	0.8	17

CHANGQING SU

#	Article	IF	CITATIONS
37	Targeted Hsp70 expression combined with CIK-activated immune reconstruction synergistically exerts antitumor efficacy in patient-derived hepatocellular carcinoma xenograft mouse models. Oncotarget, 2015, 6, 1079-1089.	0.8	17
38	A Novel Matrine Derivative WM130 Inhibits Activation of Hepatic Stellate Cells and Attenuates Dimethylnitrosamine-Induced Liver Fibrosis in Rats. BioMed Research International, 2015, 2015, 1-13.	0.9	16
39	Effects of G250 promoter controlled conditionally replicative adenovirus expressing Ki67-siRNA on renal cancer cell. Cancer Science, 2012, 103, 1880-1888.	1.7	15
40	Protein phosphatase PHLPP induces cell apoptosis and exerts anticancer activity by inhibiting Survivin phosphorylation and nuclear export in gallbladder cancer. Oncotarget, 2015, 6, 19148-19162.	0.8	14
41	Volatile oil from <i>Saussurea lappa</i> exerts antitumor efficacy by inhibiting epithelial growth factor receptor tyrosine kinase-mediated signaling pathway in hepatocellular carcinoma. Oncotarget, 2016, 7, 79761-79773.	0.8	12
42	Human sulfataseâ€1 inhibits the migration and proliferation of SMMCâ€7721 hepatocellular carcinoma cells by downregulating the growth factor signaling. Hepatology Research, 2013, 43, 516-525.	1.8	11
43	Viral therapy for pancreatic cancer: Tackle the bad guys with poison. Cancer Letters, 2013, 333, 1-8.	3.2	11
44	LpCat1 Promotes Malignant Transformation of Hepatocellular Carcinoma Cells by Directly Suppressing STAT1. Frontiers in Oncology, 2021, 11, 678714.	1.3	11
45	Triple-serotype chimeric oncolytic adenovirus exerts multiple synergistic mechanisms against solid tumors. , 2022, 10, e004691.		9
46	A truncated minimal-E1a gene with potency to support adenoviral replication mediates antitumor activity by down-regulating Neu expression and preserving Rb function. Chemico-Biological Interactions, 2009, 181, 1-7.	1.7	8
47	<scp>miR</scp> â€2392 functions as tumour suppressor and inhibits malignant progression of hepatocellular carcinoma via directly targeting <scp>JAG2</scp> . Liver International, 2022, 42, 1658-1673.	1.9	7
48	Desulfation of cell surface HSPG is an effective strategy for the treatment of gallbladder carcinoma. Cancer Letters, 2016, 381, 349-358.	3.2	6
49	A rapid quantitative analysis of bile acids, lysophosphatidylcholines and polyunsaturated fatty acids in biofluids based on ultraperformance liquid chromatography coupled with triple quadrupole tandem massspectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1068-1069, 343-351	1.2	6
50	A high-throughput targeted metabolomics method for the quantification of 104 non-polar metabolites in cholesterol, eicosanoid, and phospholipid metabolism: application in the study of a CCl ₄ -induced liver injury mouse model. Analyst, The, 2020, 145, 3575-3591.	1.7	6
51	Human sulfatase 1 exerts anti-tumor activity by inhibiting the AKT/ CDK4 signaling pathway in melanoma. Oncotarget, 2016, 7, 84486-84495.	0.8	6
52	Adenovirus-Mediated Dual Gene Expression of Human Interleukin-10 and Hepatic Growth Factor Exerts Protective Effect Against CCl4-Induced Hepatocyte Injury in Rats. Digestive Diseases and Sciences, 2012, 57, 1857-1865.	1.1	5
53	Hepatobiliary cancer: All efforts for one goal. Cancer Letters, 2016, 379, 164-165.	3.2	3
54	l ¹³¹ reinforces antitumor activity of metuximab by reversing epithelial–mesenchymal transition via <scp>VEGFR</scp> â€2 signaling in hepatocellular carcinoma. Genes To Cells, 2018, 23, 35-45.	0.5	3

#	Article	IF	CITATIONS
55	Adenovirus-Based Gene Therapy for Cancer. , 0, , .		2
56	Enrichment and identification of differentially expressed genes in hepatocellular carcinoma stemâ€ʻlike cells. Oncology Letters, 2020, 20, 1-1.	0.8	1
57	Featuring the special issue guest editor: Changqing Su, Ph.D. Cancer Letters, 2016, 379, 161-162.	3.2	0
58	The Strategy of Conditionally Replicating Adenovirus-Mediated PreS2 Mini-Antibody Expression Has Dual Effects of Inhibiting HBV Infection and Preventing Hepatocellular Carcinoma. Cancer Management and Research, 2021, Volume 13, 1869-1876.	0.9	0
59	PRCC reduces the sensitivity of cancer cells to DNA damage by inhibiting JNK and ATM/ATR pathways and results in a poor prognosis in hepatocellular carcinoma. Cell and Bioscience, 2021, 11, 185.	2.1	0