Elmar Nöth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4022038/publications.pdf

Version: 2024-02-01

185998 214527 3,047 132 28 47 citations h-index papers

g-index 145 145 145 2062 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	User State Modeling Based on the Arousal-Valence Plane: Applications in Customer Satisfaction and Health-Care. IEEE Transactions on Affective Computing, 2023, 14, 1533-1546.	5.7	4
2	The phonetic footprint of Parkinson's disease. Computer Speech and Language, 2022, 72, 101321.	2.9	3
3	Empirical Mode Decomposition articulation feature extraction on Parkinson's Diadochokinesia. Computer Speech and Language, 2022, 72, 101322.	2.9	5
4	Is There Any Additional Information inÂaÂNeural Network Trained forÂPathological Speech Classification?. Lecture Notes in Computer Science, 2021, , 435-447.	1.0	4
5	Automatic boost articulation therapy in adults with dysarthria: Acceptability, usability and user interaction. International Journal of Language and Communication Disorders, 2021, 56, 892-906.	0.7	4
6	Cognitive Determinants of Dysarthria in Parkinson's Disease: An Automated Machine Learning Approach. Movement Disorders, 2021, 36, 2862-2873.	2.2	36
7	Transfer learning helps to improve the accuracy to classify patients with different speech disorders in different languages. Pattern Recognition Letters, 2021, 150, 272-279.	2.6	10
8	Evaluation of GOI Detectors in EGG Signals Assuming Different Models for the Pulse Length Variability. Lecture Notes in Computer Science, 2021, , 434-443.	1.0	0
9	Applying X-Vectors on Pathological Speech After Larynx Removal. , 2021, , .		O
10	From discourse to pathology: Automatic identification of Parkinson's disease patients via morphological measures across three languages. Cortex, 2020, 132, 191-205.	1.1	24
11	Parallel Representation Learning for the Classification of Pathological Speech: Studies on Parkinson's Disease and Cleft Lip and Palate. Speech Communication, 2020, 122, 56-67.	1.6	20
12	Automatic detection of Voice Onset Time in voiceless plosives using gated recurrent units. , 2020, 104, 102779.		5
13	Nonlinear dynamics and Poincaré sections to model gait impairments in different stages of Parkinson's disease. Nonlinear Dynamics, 2020, 100, 3253-3276.	2.7	13
14	Comparison of User Models Based on GMM-UBM and I-Vectors for Speech, Handwriting, and Gait Assessment of Parkinson's Disease Patients. , 2020, , .		4
15	Transfer Learning to Detect Parkinson's Disease from Speech In Different Languages Using Convolutional Neural Networks with Layer Freezing. Lecture Notes in Computer Science, 2020, , 331-339.	1.0	3
16	Assessing the Dysarthria Level of Parkinson's Disease Patients with GMM-UBM Supervectors Using Phonological Posteriors and Diadochokinetic Exercises. Lecture Notes in Computer Science, 2020, , 356-365.	1.0	1
17	Acoustic Characteristics of VOT in Plosive Consonants Produced by Parkinson's Patients. Lecture Notes in Computer Science, 2020, , 303-311.	1.0	3
18	Multimodal Assessment of Parkinson's Disease: A Deep Learning Approach. IEEE Journal of Biomedical and Health Informatics, 2019, 23, 1618-1630.	3.9	126

#	Article	IF	Citations
19	ORCA-SPOT: An Automatic Killer Whale Sound Detection Toolkit Using Deep Learning. Scientific Reports, 2019, 9, 10997.	1.6	55
20	Deep Learning Approach to Parkinson's Disease Detection Using Voice Recordings and Convolutional Neural Network Dedicated to Image Classification. , 2019, 2019, 717-720.		57
21	Articulation and Empirical Mode Decomposition Features in Diadochokinetic Exercises for the Speech Assessment of Parkinson's Disease Patients. Lecture Notes in Computer Science, 2019, , 688-696.	1.0	6
22	Bidirectional Alignment of Glottal Pulse Length Sequences for the Evaluation of Pitch Detection Algorithms. Lecture Notes in Computer Science, 2019, , 707-716.	1.0	0
23	Analytical Solution for the Optimal Addition of an Item to a Composite of Scores for Maximum Reliability. Lecture Notes in Computer Science, 2019, , 408-416.	1.0	0
24	Convolutional Neural Networks and a Transfer Learning Strategy to Classify Parkinson's Disease from Speech in Three Different Languages. Lecture Notes in Computer Science, 2019, , 697-706.	1.0	14
25	Collinearity and Sample Coverage Issues in the Objective Measurement of Vocal Quality: The Case of Roughness and Breathiness. Journal of Speech, Language, and Hearing Research, 2018, 61, 1-24.	0.7	16
26	NeuroSpeech: An open-source software for Parkinson's speech analysis., 2018, 77, 207-221.		72
27	Automatic Intelligibility Assessment of Parkinson's Disease with Diadochokinetic Exercises. Communications in Computer and Information Science, 2018, , 223-230.	0.4	2
28	Phonological Posteriors and GRU Recurrent Units to Assess Speech Impairments of Patients with Parkinson's Disease. Lecture Notes in Computer Science, 2018, , 453-461.	1.0	4
29	Speaker models for monitoring Parkinson's disease progression considering different communication channels and acoustic conditions. Speech Communication, 2018, 101, 11-25.	1.6	23
30	Towards an automatic evaluation of the dysarthria level of patients with Parkinson's disease. Journal of Communication Disorders, 2018, 76, 21-36.	0.8	72
31	Subtext Word Accuracy and Prosodic Features forÂAutomatic Intelligibility Assessment. Lecture Notes in Computer Science, 2018, , 473-481.	1.0	0
32	Detection of different voice diseases based on the nonlinear characterization of speech signals. Expert Systems With Applications, 2017, 82, 184-195.	4.4	31
33	Language Independent Assessment of Motor Impairments of Patients with Parkinson's Disease Using i-Vectors. Lecture Notes in Computer Science, 2017, , 147-155.	1.0	2
34	Speech Production Quality of Cochlear Implant Users with Respect to Duration and Onset of Hearing Loss. Orl, 2017, 79, 282-294.	0.6	18
35	Characterisation of voice quality of Parkinson's disease using differential phonological posterior features. Computer Speech and Language, 2017, 46, 196-208.	2.9	46
36	Automatic detection of Parkinson's disease in running speech spoken in three different languages. Journal of the Acoustical Society of America, 2016, 139, 481-500.	0.5	151

#	Article	IF	Citations
37	How language flows when movements donâ∈™t: An automated analysis of spontaneous discourse in Parkinsonâ∈™s disease. Brain and Language, 2016, 162, 19-28.	0.8	89
38	Objective voice and speech analysis of persons with chronic hoarseness by prosodic analysis of speech samples. Logopedics Phoniatrics Vocology, 2016, 41, 106-116.	0.5	35
39	Spectral and cepstral analyses for Parkinson's disease detection in Spanish vowels and words. Expert Systems, 2015, 32, 688-697.	2.9	34
40	Automatic Evaluation of Voice Quality Using Text-Based Laryngograph Measurements and Prosodic Analysis. Computational and Mathematical Methods in Medicine, 2015, 2015, 1-11.	0.7	5
41	Characterization Methods for the Detection of Multiple Voice Disorders: Neurological, Functional, and Laryngeal Diseases. IEEE Journal of Biomedical and Health Informatics, 2015, 19, 1820-1828.	3.9	96
42	A Survey on perceived speaker traits: Personality, likability, pathology, and the first challenge. Computer Speech and Language, 2015, 29, 100-131.	2.9	43
43	Automatic Detection of Parkinson's Disease from Compressed Speech Recordings. Lecture Notes in Computer Science, 2015, , 88-95.	1.0	4
44	Language-Independent Automatic Evaluation of Intelligibility of Chronically Hoarse Persons. Folia Phoniatrica Et Logopaedica, 2014, 66, 219-226.	0.5	0
45	Design and implementation of an embedded system for real time analysis of speech from people with Parkinson's disease. , 2013, , .		2
46	Automatic detection of Parkinson's disease using noise measures of speech. , 2013, , .		11
47	Factors influencing relative speech intelligibility in patients with oral squamous cell carcinoma: a prospective study using automatic, computer-based speech analysis. International Journal of Oral and Maxillofacial Surgery, 2013, 42, 1377-1384.	0.7	26
48	Analysis of Speech from People with Parkinson's Disease through Nonlinear Dynamics. Lecture Notes in Computer Science, 2013, , 112-119.	1.0	24
49	Automatic phoneme analysis in children with Cleft Lip and Palate. , 2013, , .		3
50	Perceptual Analysis of Speech Signals from People with Parkinson's Disease. Lecture Notes in Computer Science, 2013, , 201-211.	1.0	13
51	New Cues in Low-Frequency of Speech for Automatic Detection of Parkinson's Disease. Lecture Notes in Computer Science, 2013, , 283-292.	1.0	7
52	A software kit for automatic voice descrambling. , 2012, , .		1
53	"Looks do matterâ€â€"visual attentional biases in adolescent girls with eating disorders viewing body images. Psychiatry Research, 2012, 198, 321-323.	1.7	43
54	The FAU Video Lecture Browser system. , 2012, , .		3

#	Article	IF	CITATIONS
55	Automatic Intelligibility Assessment of Speakers After Laryngeal Cancer by Means of Acoustic Modeling. Journal of Voice, 2012, 26, 390-397.	0.6	34
56	Vowel- and Text-Based Cepstral Analysis of Chronic Hoarseness. Journal of Voice, 2012, 26, 416-424.	0.6	71
57	Automatic Rating of Hoarseness by Text-based Cepstral and Prosodic Evaluation. Lecture Notes in Computer Science, 2012, , 573-580.	1.0	2
58	Automatic intelligibility assessment of pathologic speech over the telephone. Logopedics Phoniatrics Vocology, 2011, 36, 175-181.	0.5	14
59	Detection of persons with Parkinson's disease by acoustic, vocal, and prosodic analysis., 2011,,.		46
60	Automatic Quantification of Speech Intelligibility in Patients After Treatment for Oral Squamous Cell Carcinoma. Journal of Oral and Maxillofacial Surgery, 2011, 69, 1493-1500.	0.5	18
61	A scalable architecture for multilingual speech recognition on embedded devices. Speech Communication, 2011, 53, 62-74.	1.6	3
62	An automatic version of a reading disorder test. ACM Transactions on Speech and Language Processing, 2011, 7, 1-15.	0.9	6
63	Associating children's non-verbal and verbal behaviour: Body movements, emotions, and laughter in a human-robot interaction. , $2011,\ldots$		7
64	Compensation of extrinsic variability in speaker verification systems on simulated Skype and HF channel data. , $2011, , .$		1
65	Intelligibility Rating with Automatic Speech Recognition, Prosodic, and Cepstral Evaluation. Lecture Notes in Computer Science, 2011, , 195-202.	1.0	10
66	Reliable Detection of Important Word Boundaries Using Prosodic Features. Lecture Notes in Computer Science, 2011, , 259-267.	1.0	0
67	A Novel Lecture Browsing System Using Ranked Key Phrases and StreamGraphs. Lecture Notes in Computer Science, 2011, , 17-24.	1.0	1
68	Atypical Speech. Eurasip Journal on Audio, Speech, and Music Processing, 2010, 2010, 1-2.	1.3	1
69	Automatic, computerâ€based speech assessment on edentulous patients with and without complete dentures – preliminary results. Journal of Oral Rehabilitation, 2010, 37, 209-216.	1.3	23
70	Clap your hands! Calibrating spectral subtraction for dereverberation. , 2010, , .		1
71	Improvement of a speech recognizer for standardized medical assessment of children's speech by integration of prior knowledge. , 2010, , .		1
72	Automatic Speech Recognition Systems for the Evaluation of Voice and Speech Disorders in Head and Neck Cancer. Eurasip Journal on Audio, Speech, and Music Processing, 2010, 2010, 1-7.	1.3	33

#	Article	lF	Citations
73	Automatic Speech Recognition Systems for the Evaluation of Voice and Speech Disorders in Head and Neck Cancer. Eurasip Journal on Audio, Speech, and Music Processing, 2010, 2010, 926951.	1.3	20
74	Automatic Detection and Evaluation of Edentulous Speakers with Insufficient Dentures. Lecture Notes in Computer Science, 2010, , 243-250.	1.0	2
75	Automatic detection of articulation disorders in children with cleft lip and palate. Journal of the Acoustical Society of America, 2009, 126, 2589-2602.	0.5	53
76	Application of Automatic Speech Recognition to Quantitative Assessment of Tracheoesophageal Speech with Different Signal Quality. Folia Phoniatrica Et Logopaedica, 2009, 61, 12-17.	0.5	10
77	Automatic Evaluation of Tracheoesophageal Substitute Voice: Sustained Vowel versus Standard Text. Folia Phoniatrica Et Logopaedica, 2009, 61, 112-116.	0.5	5
78	Automatic classification of reading disorders in a single word reading test., 2009,,.		0
79	An automatic screening test for preschool children. , 2009, , .		1
80	Towards a language-independent intelligibility assessment of children with cleft lip and palate. , 2009, , .		3
81	PEAKS $\hat{a}\in$ A system for the automatic evaluation of voice and speech disorders. Speech Communication, 2009, 51, 425-437.	1.6	214
82	Automatic pronunciation scoring of words and sentences independent from the non-native's first language. Computer Speech and Language, 2009, 23, 65-88.	2.9	54
83	3D Tele-Medical Speech Therapy using Time-of-Flight Technology. IFMBE Proceedings, 2009, , 1500-1503.	0.2	2
84	Objective vs.ÂSubjective Evaluation of Speakers with and without Complete Dentures. Lecture Notes in Computer Science, 2009, , 170-177.	1.0	2
85	QMOS - a Robust Visualization Method for Speaker Dependencies With Different Microphones. Journal of Pattern Recognition Research, 2009, 4, 32-51.	0.9	8
86	Communication Disorders and Speech Technology. Lecture Notes in Computer Science, 2009, , 15-15.	1.0	0
87	Towards the Automatic Classification of Reading Disorders in Continuous Text Passages. Lecture Notes in Computer Science, 2009, , 282-290.	1.0	0
88	Private emotions versus social interaction: a data-driven approach towards analysing emotion in speech. User Modeling and User-Adapted Interaction, 2008, 18, 175-206.	2.9	76
89	To talk or not to talk with a computer. Journal on Multimodal User Interfaces, 2008, 2, 171-186.	2.0	16
90	Text-based vs. vowel-based automatic evaluation of tracheoesophageal substitute voice. , 2008, , .		1

#	Article	IF	Citations
91	Automatic Quantification of Speech Intelligibility of Adults with Oral Squamous Cell Carcinoma. Folia Phoniatrica Et Logopaedica, 2008, 60, 151-156.	0.5	35
92	Age and gender recognition for telephone applications based on GMM supervectors and support vector machines. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, 2008, , .	1.8	70
93	Age Determination of Children in Preschool and Primary School Age with GMM-Based Supervectors and Support Vector Machines/Regression. Lecture Notes in Computer Science, 2008, , 253-260.	1.0	15
94	Influence of Reading Errors on the Text-Based Automatic Evaluation of Pathologic Voices. Lecture Notes in Computer Science, 2008, , 325-332.	1.0	3
95	Analysis of Hypernasal Speech in Children withÂCleftÂLipÂandÂPalate. Lecture Notes in Computer Science, 2008, , 389-396.	1.0	6
96	Multilingual Weighted Codebooks forÂNon-nativeÂSpeechÂRecognition. Lecture Notes in Computer Science, 2008, , 485-492.	1.0	6
97	Quantification of Segmentation and F0 Errors andÂTheirÂEffectÂonÂEmotionÂRecognition. Lecture Notes in Computer Science, 2008, , 525-534.	1.0	10
98	An Extension to the Sammon Mapping for the Robust Visualization of Speaker Dependencies. Lecture Notes in Computer Science, 2008, , 381-388.	1.0	2
99	Prosodic Events Recognition in Evaluation ofÂSpeech-SynthesisÂSystemÂPerformance. Lecture Notes in Computer Science, 2008, , 419-426.	1.0	0
100	Does multimodality really help? the classification of emotion and of On/Off-focus in multimodal dialogues - two case studies Proceedings ELMAR, 2007, , .	0.0	3
101	Boosting of Prosodic and Pronunciation Features to Detect Mispronunciations of Non-Native Children. , 2007, , .		7
102	Automatic evaluation of prosodic features of tracheoesophageal substitute voice. European Archives of Oto-Rhino-Laryngology, 2007, 264, 1315-1321.	0.8	22
103	Intelligibility Is More Than a Single Word: Quantification of Speech Intelligibility by ASR and Prosody. , 2007, , 278-285.		3
104	Automatic Evaluation of Pathologic Speech – from Research to Routine Clinical Use. , 2007, , 294-301.		2
105	Intelligibility of Children with Cleft Lip and Palate: Evaluation by Speech Recognition Techniques. , 2006, , .		9
106	Evaluation of speech intelligibility for children with cleft lip and palate by means of automatic speech recognition. International Journal of Pediatric Otorhinolaryngology, 2006, 70, 1741-1747.	0.4	70
107	Intelligibility of laryngectomees' substitute speech: automatic speech recognition and subjective rating. European Archives of Oto-Rhino-Laryngology, 2006, 263, 188-193.	0.8	44
108	The Prosody Module. Cognitive Technologies, 2006, , 139-152.	0.5	7

#	Article	IF	CITATIONS
109	Mensch-Maschine Interaktion f $\tilde{A}^{1/4}$ r den interventionellen Einsatz. , 2005, , 485-489.		О
110	MOBSY: Integration of vision and dialogue in service robots. Machine Vision and Applications, 2003, 14, 26-34.	1.7	10
111	How to find trouble in communication. Speech Communication, 2003, 40, 117-143.	1.6	202
112	Automatic Pixel Selection for Optimizing Facial Expression Recognition Using Eigenfaces. Lecture Notes in Computer Science, 2003, , 378-385.	1.0	10
113	Speech Recognition with $\hat{l}^{1}\!\!/\!$	1.0	1
114	Integrated recognition of words and prosodic phrase boundaries. Speech Communication, 2002, 36, 81-95.	1.6	26
115	On the use of prosody in automatic dialogue understanding. Speech Communication, 2002, 36, 45-62.	1.6	25
116	Comparison and Combination of Confidence Measures. Lecture Notes in Computer Science, 2002, , 181-188.	1.0	3
117	Prosodic Classification of Offtalk: First Experiments. Lecture Notes in Computer Science, 2002, , 357-364.	1.0	3
118	Towards a Dynamic Adjustment of the Language Weight. Lecture Notes in Computer Science, 2001, , 323-328.	1.0	1
119	VERBMOBIL: the use of prosody in the linguistic components of a speech understanding system. IEEE Transactions on Speech and Audio Processing, 2000, 8, 519-532.	2.0	56
120	The Prosody Module. Artificial Intelligence, 2000, , 106-121.	0.7	51
121	The Recognition of Emotion. Artificial Intelligence, 2000, , 122-130.	0.7	25
122	Interpolated markov chains for eukaryotic promoter recognition. Bioinformatics, 1999, 15, 362-369.	1.8	105
123	Information Theoretic Based Segments for Language Identification. Lecture Notes in Computer Science, 1999, , 187-192.	1.0	0
124	A Segment Based Approach for Prosodic Boundary Detection?. Lecture Notes in Computer Science, 1999, , 199-202.	1.0	0
125	Prosodische Information: Begriffsbestimmung und Nutzen f $\tilde{A}^{1}\!\!/_{\!\!4}$ r das Sprachverstehen. Informatik Aktuell, 1997, , 37-52.	0.4	1
126	Prosodische Information in der automatischen Spracherkennung., 1991,,.		9

Elmar Nöth

#	Article	IF	CITATION
127	"Of All Things the Measure Is Man" : Automatic Classification of Emotions and Inter-Labeler Consistency. , 0, , .		47
128	Can you Understand him? Let's Look at his Word Accuracy - Automatic Evaluation of Tracheoesophageal Speech. , 0, , .		3
129	Automatic evaluation of parkinson's speech $\hat{a} \in \text{``acoustic, prosodic and voice related cues., 0,,.}$		19
130	Convolutional Neural Network to Model Articulation Impairments in Patients with Parkinsonâ \in $^{\text{MS}}$ Disease. , 0, , .		47
131	Phonet: A Tool Based on Gated Recurrent Neural Networks to Extract Phonological Posteriors from Speech., 0,,.		20
132	Feature Representation of Pathophysiology of Parkinsonian Dysarthria., 0,,.		11