
Sayed Abulanwar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4021960/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Computation of Lightning-Induced Voltages Considering Ground Impedance of Multi-Conductor Line for Lossy Dispersive Soil. IEEE Transactions on Power Delivery, 2022, 37, 2464-2473.	4.3	2
2	Optimal operational strategy for a future electricity and hydrogen supply system in a residential area. International Journal of Hydrogen Energy, 2022, 47, 4426-4440.	7.1	13
3	Robust Flatness Controller for DC/DC Converter for Fuel Cell under Constant Power Load. , 2022, , .		0
4	Optimal Sizing of Standalone Hybrid Microgrid Using Artificial Jellyfish Search. , 2022, , .		2
5	Applications of artificial intelligence in renewable energy systems. IET Renewable Power Generation, 2022, 16, 1279-1282.	3.1	8
6	Sensorless Robust Flatness-Based Control With Nonlinear Observer for Non-Ideal Parallel DC–AC Inverters. IEEE Access, 2022, 10, 53940-53953.	4.2	1
7	Investigation of Novel DC Wind Farm Layout During Continuous Operation and Lightning Strikes. IEEE Transactions on Power Delivery, 2021, 36, 2221-2230.	4.3	9
8	Thermal Optimization Strategy Based on Second-Order Harmonic Circulating Current Injection for MMCs. IEEE Access, 2021, 9, 80183-80196.	4.2	7
9	Risk management strategy for a renewable power supply system in commercial buildings considering thermal comfort and stochastic electric vehicle behaviors. Energy Conversion and Management, 2021, 230, 113831.	9.2	27
10	Enhanced design of an offgrid PV-battery-methanation hybrid energy system for power/gas supply. Renewable Energy, 2021, 167, 440-456.	8.9	15
11	DC-Link High-Frequency Current Ripple Elimination Strategy for MMCs Using Phase-Shifted Double-Group Multicarrier-Based Phase-Disposition PWM. IEEE Transactions on Power Electronics, 2021, 36, 8872-8886.	7.9	14
12	Adaptive synergistic control strategy for a hybrid AC/DC microgrid during normal operation and contingencies. Applied Energy, 2021, 304, 117756.	10.1	14
13	Suppression of DC-Link Current Ripple for Modular Multilevel Converters Under Phase-Disposition PWM. IEEE Transactions on Power Electronics, 2020, 35, 3310-3324.	7.9	33
14	Power Losses Control for Modular Multilevel Converters Under Capacitor Deterioration. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8, 4318-4332.	5.4	37
15	A Currentless Submodule Individual Voltage Balancing Control for Modular Multilevel Converters. IEEE Transactions on Industrial Electronics, 2020, 67, 9370-9382.	7.9	36
16	Optimal operation of a wind-electrolytic hydrogen storage system in the electricity/hydrogen markets. International Journal of Hydrogen Energy, 2020, 45, 24412-24423.	7.1	65
17	Proposed controller and stability analysis for DFIG to suppress stator flux oscillations during autonomous operation. IET Renewable Power Generation, 2020, 14, 747-758.	3.1	7
18	Optimal operational strategy for an offgrid hybrid hydrogen/electricity refueling station powered by solar photovoltaics. Journal of Power Sources, 2020, 451, 227810.	7.8	76

SAYED ABULANWAR

#	Article	IF	CITATIONS
19	Designing a standalone wind-diesel-CAES hybrid energy system by using a scenario-based bi-level programming method. Energy Conversion and Management, 2020, 211, 112759.	9.2	37
20	A double input-parallel-output-series hybrid switched-capacitor boost converter. Chinese Journal of Electrical Engineering, 2020, 6, 15-27.	3.4	19
21	Performance of Large-Scale Grounding Systems in Thermal Power Plants Against Lightning Strikes to Nearby Transmission Towers. IEEE Transactions on Electromagnetic Compatibility, 2019, 61, 400-408.	2.2	11
22	A proposed flicker mitigation scheme of DFIG in weak distribution networks. AEJ - Alexandria Engineering Journal, 2019, 58, 677-687.	6.4	12
23	Mitigation of DC Wind Farm Power Fluctuations Based Battery Energy Storage System. , 2019, , .		3
24	Multidisciplinary Control Scheme based Capacitor Voltage for LCL Filtered Grid Connected Converter. , 2019, , .		0
25	Control strategy of wind turbine based on permanent magnet synchronous generator and energy storage for stand-alone systems. Chinese Journal of Electrical Engineering, 2017, 3, 51-62.	3.4	26
26	Coordination Control of a Novel Wind Farm Configuration Including a Hydrogen Storage System and a Gas Turbine. Energies, 2016, 9, 535.	3.1	1
27	Adaptive voltage control strategy for variableâ€speed wind turbine connected to a weak network. IET Renewable Power Generation, 2016, 10, 238-249.	3.1	32
28	Fault-Tolerant Approach for Modular Multilevel Converters Under Submodule Faults. IEEE Transactions on Industrial Electronics, 2016, 63, 7253-7263.	7.9	118
29	Dual-Loop Control Strategy for DFIG-Based Wind Turbines Under Grid Voltage Disturbances. IEEE Transactions on Power Electronics, 2016, 31, 2239-2253.	7.9	46
30	Virtual Damping Flux-Based LVRT Control for DFIG-Based Wind Turbine. IEEE Transactions on Energy Conversion, 2015, 30, 714-725.	5.2	97
31	Control and dynamic analysis of a parallelâ€connected single active bridge DC–DC converter for DCâ€grid wind farm application. IET Power Electronics, 2015, 8, 665-671.	2.1	21
32	A Double Uneven Power Converter-Based DC–DC Converter for High-Power DC Grid Systems. IEEE Transactions on Industrial Electronics, 2015, 62, 7599-7608.	7.9	31
33	Elimination of DC-Link Current Ripple for Modular Multilevel Converters With Capacitor Voltage-Balancing Pulse-Shifted Carrier PWM. IEEE Transactions on Power Electronics, 2015, 30, 284-296.	7.9	33
34	Characterization and assessment of voltage and power constraints of DFIG WT connected to a weak network. , 2014, , .		2
35	A Control Method for Voltage Balancing in Modular Multilevel Converters. IEEE Transactions on Power Electronics, 2014, 29, 66-76.	7.9	262
36	Flicker Mitigation by Individual Pitch Control of Variable Speed Wind Turbines With DFIG. IEEE Transactions on Energy Conversion, 2014, 29, 20-28.	5.2	63

SAYED ABULANWAR

#	Article	IF	CITATIONS
37	Flicker mitigation strategy for a doubly fed induction generator by torque control. IET Renewable Power Generation, 2014, 8, 91-99.	3.1	23
38	Enhanced LVRT control strategy for DFIG-based WECS in weak grid. , 2013, , .		5
39	Flicker Mitigation by Speed Control of Permanent Magnet Synchronous Generator Variable-Speed Wind Turbines. Energies, 2013, 6, 3807-3821.	3.1	19
40	Mitigation of power system oscillation caused by wind power fluctuation. IET Renewable Power Generation, 2013, 7, 639-651.	3.1	41
41	Improving Fault Ride-Through Capability of Variable Speed Wind Turbines in Distribution Networks. IEEE Systems Journal, 2013, 7, 713-722.	4.6	36
42	Study of DFIG wind turbine fault ride-through according to the Danish grid code. , 2013, , .		2
43	Improved FRT control scheme for DFIG wind turbine connected to a weak grid. , 2013, , .		4
44	Flicker Mitigation by Active Power Control of Variable-Speed Wind Turbines With Full-Scale Back-to-Back Power Converters. IEEE Transactions on Energy Conversion, 2009, 24, 640-649.	5.2	88
45	Nonlinear control scheme for VSC-HVDC transmission systems. , 2008, , .		7
46	Transient stability of DFIG wind turbines at an external short-circuit fault. Wind Energy, 2005, 8, 345-360.	4.2	144
47	Flicker Study on Variable Speed Wind Turbines With Doubly Fed Induction Generators. IEEE Transactions on Energy Conversion, 2005, 20, 896-905.	5.2	201