Alex M Clark

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4021519/publications.pdf Version: 2024-02-01

ALEY M CLADK

#	Article	IF	CITATIONS
1	The Next Frontier of Environmental Unknowns: Substances of Unknown or Variable Composition, Complex Reaction Products, or Biological Materials (UVCBs). Environmental Science & Technology, 2022, 56, 7448-7466.	4.6	29
2	CATMoS: Collaborative Acute Toxicity Modeling Suite. Environmental Health Perspectives, 2021, 129, 47013.	2.8	63
3	Using Machine Learning to Parse Chemical Mixture Descriptions. ACS Omega, 2021, 6, 22400-22409.	1.6	2
4	Ebola Virus Bayesian Machine Learning Models Enable New in Vitro Leads. ACS Omega, 2019, 4, 2353-2361.	1.6	49
5	Capturing mixture composition: an open machine-readable format for representing mixed substances. Journal of Cheminformatics, 2019, 11, 33.	2.8	14
6	Exploiting machine learning for end-to-end drug discovery and development. Nature Materials, 2019, 18, 435-441.	13.3	334
7	High-throughput screening and Bayesian machine learning for copper-dependent inhibitors of <i>Staphylococcus aureus</i> . Metallomics, 2019, 11, 696-706.	1.0	30
8	Multiple Machine Learning Comparisons of HIV Cell-based and Reverse Transcriptase Data Sets. Molecular Pharmaceutics, 2019, 16, 1620-1632.	2.3	49
9	Comparing and Validating Machine Learning Models for <i>Mycobacterium tuberculosis</i> Drug Discovery. Molecular Pharmaceutics, 2018, 15, 4346-4360.	2.3	83
10	Data Mining and Computational Modeling of High-Throughput Screening Datasets. Methods in Molecular Biology, 2018, 1755, 197-221.	0.4	7
11	Comparing Multiple Machine Learning Algorithms and Metrics for Estrogen Receptor Binding Prediction. Molecular Pharmaceutics, 2018, 15, 4361-4370.	2.3	120
12	Assessment of Substrate-Dependent Ligand Interactions at the Organic Cation Transporter OCT2 Using Six Model Substrates. Molecular Pharmacology, 2018, 94, 1057-1068.	1.0	77
13	Collaborative drug discovery for More Medicines for Tuberculosis (MM4TB). Drug Discovery Today, 2017, 22, 555-565.	3.2	12
14	Machine Learning Model Analysis and Data Visualization with Small Molecules Tested in a Mouse Model of <i>Mycobacterium tuberculosis</i> Infection (2014–2015). Journal of Chemical Information and Modeling, 2016, 56, 1332-1343.	2.5	23
15	Open Source Bayesian Models. 3. Composite Models for Prediction of Binned Responses. Journal of Chemical Information and Modeling, 2016, 56, 275-285.	2.5	14
16	Open Source Bayesian Models. 2. Mining a "Big Dataset―To Create and Validate Models with ChEMBL. Journal of Chemical Information and Modeling, 2015, 55, 1246-1260.	2.5	73
17	Open Source Bayesian Models. 1. Application to ADME/Tox and Drug Discovery Datasets. Journal of Chemical Information and Modeling, 2015, 55, 1231-1245.	2.5	95
18	Making Transporter Models for Drug–Drug Interaction Prediction Mobile. Drug Metabolism and Disposition, 2015, 43, 1642-1645.	1.7	13

ALEX M CLARK

#	Article	IF	CITATIONS
19	Machines first, humans second: on the importance of algorithmic interpretation of open chemistry data. Journal of Cheminformatics, 2015, 7, 9.	2.8	26
20	Parallel Worlds of Public and Commercial Bioactive Chemistry Data. Journal of Medicinal Chemistry, 2015, 58, 2068-2076.	2.9	28
21	Machine learning models identify molecules active against the Ebola virus in vitro. F1000Research, 2015, 4, 1091.	0.8	56
22	The Need for a Green Electronic Lab Notebook. RSC Drug Discovery Series, 2015, , 185-211.	0.2	1
23	Machine learning models identify molecules active against the Ebola virus in vitro. F1000Research, 2015, 4, 1091.	0.8	80
24	Looking Back to the Future: Predicting <i>in Vivo</i> Efficacy of Small Molecules versus <i>Mycobacterium tuberculosis</i> . Journal of Chemical Information and Modeling, 2014, 54, 1070-1082.	2.5	41
25	Cheminformatics: Mobile Workflows and Data Sources. ACS Symposium Series, 2014, , 237-253.	0.5	1
26	New target prediction and visualization tools incorporating open source molecular fingerprints for TB Mobile 2.0. Journal of Cheminformatics, 2014, 6, 38.	2.8	32
27	Bigger data, collaborative tools and the future of predictive drug discovery. Journal of Computer-Aided Molecular Design, 2014, 28, 997-1008.	1.3	22
28	Fast and accurate semantic annotation of bioassays exploiting a hybrid of machine learning and user confirmation. PeerJ, 2014, 2, e524.	0.9	14
29	TB Mobile: a mobile app for anti-tuberculosis molecules with known targets. Journal of Cheminformatics, 2013, 5, 13.	2.8	29
30	Incorporating Green Chemistry Concepts into Mobile Chemistry Applications and Their Potential Uses. ACS Sustainable Chemistry and Engineering, 2013, 1, 8-13.	3.2	39
31	Four disruptive strategies for removing drug discovery bottlenecks. Drug Discovery Today, 2013, 18, 265-271.	3.2	32
32	Rendering Molecular Sketches for Publication Quality Output. Molecular Informatics, 2013, 32, 291-301.	1.4	7
33	Cheminformatics workflows using mobile apps. Chem-Bio Informatics Journal, 2013, 13, 1-18.	0.1	12
34	Open Drug Discovery Teams: A Chemistry Mobile App for Collaboration. Molecular Informatics, 2012, 31, 585-597.	1.4	32
35	Redefining Cheminformatics with Intuitive Collaborative Mobile Apps. Molecular Informatics, 2012, 31, 569-584.	1.4	25
36	Accurate Specification of Molecular Structures: The Case for Zero-Order Bonds and Explicit Hydrogen Counting. Journal of Chemical Information and Modeling, 2011, 51, 3149-3157.	2.5	22

Alex M Clark

#	Article	IF	CITATIONS
37	Mobile apps for chemistry in the world of drug discovery. Drug Discovery Today, 2011, 16, 928-939.	3.2	44
38	Basic primitives for molecular diagram sketching. Journal of Cheminformatics, 2010, 2, 8.	2.8	19
39	2D Depiction of Fragment Hierarchies. Journal of Chemical Information and Modeling, 2010, 50, 37-46.	2.5	16
40	Detection and Assignment of Common Scaffolds in Project Databases of Lead Molecules. Journal of Medicinal Chemistry, 2009, 52, 469-483.	2.9	45
41	2D Depiction of Proteinâ^'Ligand Complexes. Journal of Chemical Information and Modeling, 2007, 47, 1933-1944.	2.5	137
42	Flexible 3D pharmacophores as descriptors of dynamic biological space. Journal of Molecular Graphics and Modelling, 2007, 26, 622-633.	1.3	47
43	2D Structure Depiction. Journal of Chemical Information and Modeling, 2006, 46, 1107-1123.	2.5	53
44	Bromination and nitration reactions of metallated (Ru and Os) multiaromatic ligands and crystal structures of selected products. Journal of Organometallic Chemistry, 2000, 598, 262-275.	0.8	48
45	Cyclometallated complexes of ruthenium and osmium containing the o-C6H4PPh2 ligand. Journal of Organometallic Chemistry, 2000, 601, 299-304.	0.8	20
46	The origin of the â€~spike' in the EPR spectrum of C60â^'. Chemical Communications, 2000, , 1229-1230.	2.2	20
47	Stepwise Conversion of an Osmium Trimethylstannyl Complex to a Triiodostannyl Complex and Nucleophilic Substitution Reactions at the Tinâ-'lodine Bonds. Organometallics, 2000, 19, 1766-1774.	1.1	34
48	Electrophilic Substitution Reactions at the Phenyl Ring of the Chelated 2-(2â€~-Pyridyl)phenyl Ligand Bound to Ruthenium(II) or Osmium(II). Organometallics, 1999, 18, 2813-2820.	1.1	93
49	5-Bromination of an η2-8-Quinolyl Ligand Bound to Osmium(II) and Subsequent Lithiation and Derivatization of This Functionalized Ligand1. Organometallics, 1998, 17, 4535-4537.	1.1	22
50	Osmium nitrosyl complexes with osmium-tin bonds crystal structure of Os[Sn(p-tolyl)3](NO)(CO)2(PPh3). Journal of Organometallic Chemistry, 1997, 543, 111-116.	0.8	11
51	Osmium complexes containing either chelating or non-chelating 8-quinolyl ligands. Journal of Organometallic Chemistry, 1997, 545-546, 619-622.	0.8	15
52	Machine learning models identify molecules active against the Ebola virus in vitro. F1000Research, 0, 4, 1091.	0.8	14
53	BioAssay Templates for the semantic web. PeerJ Computer Science, 0, 2, e61.	2.7	6