
Josep Maria Guilemany

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4020379/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Timing, Complications, and Safety of Tracheotomy in Critically Ill Patients With COVID-19. JAMA Otolaryngology - Head and Neck Surgery, 2021, 147, 41.	1.2	52
2	Anti-biofilm activity and in vitro biocompatibility of copper surface prepared by cold gas spray. Surface and Coatings Technology, 2021, 411, 126981.	2.2	5
3	In-vitro comparison of hydroxyapatite coatings obtained by cold spray and conventional thermal spray technologies. Materials Science and Engineering C, 2020, 107, 110306.	3.8	37
4	Effect of the Outer Layer of Al Coatings Deposited by Cold Gas Spray on the Microstructure, Mechanical Properties and Corrosion Resistance of the AA 7075-T6 Aluminum Alloy. Journal of Thermal Spray Technology, 2020, 29, 1040-1053.	1.6	9
5	The Effect of Hot Treatment on Composition and Microstructure of HVOF Iron Aluminide Coatings in Na2SO4 Molten Salts. Journal of Thermal Spray Technology, 2019, 28, 1492-1510.	1.6	11
6	X-ray microtomographic characterization of highly rough titanium cold gas sprayed coating for identification of effective surfaces for osseointegration. Microscopy (Oxford, England), 2019, 68, 413-416.	0.7	3
7	Influence of cold gas spray parameters on the corrosion resistance of Al-Al ₂ O ₃ coatings sprayed on carbon steel. Corrosion Engineering Science and Technology, 2019, 54, 567-574.	0.7	3
8	Building up WC-Co coatings by cold spray: A finite element simulation. Surface and Coatings Technology, 2019, 374, 674-689.	2.2	18
9	Corrosion resistance and antibacterial properties of copper coating deposited by cold gas spray. Surface and Coatings Technology, 2019, 361, 292-301.	2.2	43
10	Functionalized coatings by cold spray: An in vitro study of micro- and nanocrystalline hydroxyapatite compared to porous titanium. Materials Science and Engineering C, 2018, 87, 41-49.	3.8	15
11	Osteoblastic cell response on high-rough titanium coatings by cold spray. Journal of Materials Science: Materials in Medicine, 2018, 29, 19.	1.7	25
12	Corrosion behavior of WC-Co coatings deposited by cold gas spray onto AA 7075-T6. Corrosion Science, 2018, 136, 231-243.	3.0	58
13	Hierarchical structures of anodised cold gas sprayed titanium coatings. Transactions of the Institute of Metal Finishing, 2018, 96, 71-78.	0.6	6
14	In-vitro study of hierarchical structures: Anodic oxidation and alkaline treatments onto highly rough titanium cold gas spray coatings for biomedical applications. Materials Science and Engineering C, 2018, 91, 589-596.	3.8	19
15	Deposition behavior of cold-sprayed metallic glass particles onto different substrates. Surface and Coatings Technology, 2018, 349, 13-23.	2.2	18
16	Corrosion Resistance Evaluation of HVOF Produced Hydroxyapatite and TiO2-hydroxyapatite Coatings in Hanks' Solution. Materials Research, 2018, 21, .	0.6	23
17	Microstructural and fatigue behavior of cold sprayed Ni-based superalloys coatings. Surface and Coatings Technology, 2017, 324, 390-402.	2.2	51
18	Dense nanostructured calcium phosphate coating on titanium by cold spray. Journal of the European Ceramic Society, 2017, 37, 1747-1755.	2.8	34

#	Article	IF	CITATIONS
19	Deposition mechanisms of metallic glass particles by Cold Gas Spraying. Acta Materialia, 2017, 125, 327-339.	3.8	42
20	Ordering kinetics evaluation of FeAl powders. Intermetallics, 2017, 91, 78-85.	1.8	7
21	Plastic deformation phenomena during cold spray impact of WC-Co particles onto metal substrates. Acta Materialia, 2017, 124, 173-181.	3.8	60
22	Corrosion characteristics of cold gas spray coatings of reinforced aluminum deposited onto carbon steel. Corrosion Science, 2017, 114, 57-71.	3.0	86
23	The application of photoluminescence piezospectroscopy for residual stresses measurement in thermally sprayed TBCs. Surface and Coatings Technology, 2017, 318, 147-156.	2.2	28
24	Cold gas spray coatings: basic principles corrosion protection and applications. Ecletica Quimica, 2017, 42, 09.	0.2	27
25	Real-Time Protein and Cell Binding Measurements on Hydroxyapatite Coatings. Journal of Functional Biomaterials, 2016, 7, 23.	1.8	4
26	Influence of atmospheric plasma spraying on the solar photoelectro-catalytic properties of TiO2 coatings. Applied Catalysis B: Environmental, 2016, 189, 151-159.	10.8	70
27	Attrition and Cryogenic milling powder production for Low Pressure Cold Gas Spray and composite coatings characterization. Advanced Powder Technology, 2016, 27, 1257-1264.	2.0	12
28	A New Alternative for Obtaining Nanocrystalline Bioactive Coatings: Study of Hydroxyapatite Deposition Mechanisms by Cold Gas Spraying. Journal of the American Ceramic Society, 2016, 99, 1420-1428.	1.9	33
29	Enhancing the performance of common electrode materials by means of atmospheric plasma spray coatings. Journal of Energy Storage, 2016, 5, 127-133.	3.9	11
30	Acid blue 29 decolorization and mineralization by anodic oxidation with a cold gas spray synthesized Sn–Cu–Sb alloy anode. Chemosphere, 2016, 148, 47-54.	4.2	36
31	Photocatalytic abatement of NOx by C-TiO2/polymer composite coatings obtained by low pressure cold gas spraying. Applied Surface Science, 2016, 362, 274-280.	3.1	28
32	Coating formation, fracture mode and cavitation performance of Fe40Al deposited by cold gas spraying. Surface Engineering, 2015, 31, 853-859.	1.1	7
33	Cold spray as an emerging technology for biocompatible and antibacterial coatings: state of art. Journal of Materials Science, 2015, 50, 4441-4462.	1.7	87
34	On the formation of metallic glass coatings by means of Cold Gas Spray technology. Journal of Alloys and Compounds, 2015, 651, 764-772.	2.8	49
35	Comparison of the mechanical and electrochemical properties of WC-17 and 12Co coatings onto Al7075-T6 obtained by high velocity oxy-fuel and cold gas spraying. Surface and Coatings Technology, 2015, 268, 180-189.	2.2	40
36	The influence of feedstock powders on the CGS deposition efficiency of bond coats for TBCs. Journal of Alloys and Compounds, 2015, 622, 394-401.	2.8	22

#	Article	IF	CITATIONS
37	Influence of Cold Gas Spray process conditions on the microstructure of Fe-based amorphous coatings. Journal of Alloys and Compounds, 2015, 622, 995-999.	2.8	59
38	Influence of spraying parameters on cold gas spraying of iron aluminide intermetallics. Surface and Coatings Technology, 2015, 268, 99-107.	2.2	24
39	Comparison of the Mechanical and Electrochemical Properties of WC-25Co Coatings Obtained by High Velocity Oxy-Fuel and Cold Gas Spraying. Journal of Thermal Spray Technology, 2014, 23, 1251-1258.	1.6	22
40	In vitro performance of ceramic coatings obtained by high velocity oxy-fuel spray. Bio-Medical Materials and Engineering, 2014, 24, 1781-1791.	0.4	1
41	Enhancing the bioactivity of polymeric implants by means of cold gas spray coatings. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 1537-1543.	1.6	20
42	Comparison of in vitro behavior of as-sprayed, alkaline-treated and collagen-treated bioceramic coatings obtained by high velocity oxy-fuel spray. Applied Surface Science, 2014, 307, 246-254.	3.1	5
43	Prognostic significance and association of Helicobacter pylori infection in pharyngolaryngeal cancer. European Archives of Oto-Rhino-Laryngology, 2014, 271, 2539-2543.	0.8	9
44	Milestones in Functional Titanium Dioxide Thermal Spray Coatings: A Review. Journal of Thermal Spray Technology, 2014, 23, 577-595.	1.6	57
45	Mechanical performance of bioceramic coatings obtained by high-velocity oxy-fuel spray for biomedical purposes. Surface and Coatings Technology, 2014, 242, 92-99.	2.2	13
46	Improved bonding strength of bioactive cermet Cold Gas Spray coatings. Materials Science and Engineering C, 2014, 45, 117-121.	3.8	14
47	Protection behaviour of surface films formed on AZ91D magnesium alloy in nitrogen/1,1,1,2-tetrafluoroethane atmospheres. Metals and Materials International, 2014, 20, 613-618.	1.8	5
48	Comparing Two Antibacterial Treatments for Bioceramic Coatings at Short Culture Times. Journal of Thermal Spray Technology, 2014, 23, 684-691.	1.6	3
49	Photocatalytic Activity of Nanostructured Anatase Coatings Obtained by Cold Gas Spray. Journal of Thermal Spray Technology, 2014, 23, 1135-1141.	1.6	25
50	Cold spray deposition of WC–17 and 12Co cermets onto aluminum. Surface and Coatings Technology, 2013, 235, 54-61.	2.2	49
51	Study of stellite-6 deposition by cold gas spraying. Surface and Coatings Technology, 2013, 232, 891-898.	2.2	30
52	Structural and properties characterization of stellite coatings obtained by cold gas spraying. Surface and Coatings Technology, 2013, 220, 90-97.	2.2	22
53	Influence of the particle morphology on the Cold Gas Spray deposition behaviour of titanium on aluminum light alloys. Journal of Alloys and Compounds, 2013, 554, 89-96.	2.8	35
54	Residual stress development in cold sprayed Al, Cu and Ti coatings. Acta Materialia, 2013, 61, 6329-6337.	3.8	135

#	Article	IF	CITATIONS
55	Optimization of 316L stainless steel coatings on light alloys using Cold Gas Spray. Surface and Coatings Technology, 2013, 235, 220-225.	2.2	50
56	Mechanical and nanoindentation behavior of TiC–NiTi thermal spray coatings. Journal of Alloys and Compounds, 2013, 577, S277-S281.	2.8	10
57	Cold gas spray titanium coatings onto a biocompatible polymer. Materials Letters, 2013, 106, 97-99.	1.3	97
58	Tribological characterization of biocompatible HAp-TiO2 coatings obtained by high velocity oxy-fuel spray. Wear, 2013, 305, 8-13.	1.5	15
59	A review on fabrication, sensing mechanisms and performance of metal oxide gas sensors. Journal of Materials Science: Materials in Electronics, 2013, 24, 1410-1421.	1.1	121
60	Improved, high conductivity titanium sub-oxide coated electrodes obtained byÂAtmospheric Plasma Spray. Journal of Power Sources, 2013, 238, 430-434.	4.0	12
61	New procedures for building-up the active layer of gas sensors on flexible polymers. Surface and Coatings Technology, 2013, 235, 848-852.	2.2	25
62	Influence of nanostructured ZrO2 additions on the wear resistance of Ni-based alloy coatings deposited by APS process. Wear, 2013, 303, 591-601.	1.5	19
63	Cold spray deposition of a WC-25Co cermet onto Al7075-T6 and carbon steel substrates. Acta Materialia, 2013, 61, 643-652.	3.8	115
64	Recubrimientos micro/nanoestructurados de aleaciones ligeras mediante proyección frÃa para la protección y reparación de componentes de elevado valor añadido: Estado del arte. Revista De Metalurgia, 2013, 49, 223-236.	0.1	2
65	Thermal spraying of transition metal aluminides: An overview. Intermetallics, 2012, 24, 60-72.	1.8	85
66	Functional colored ceramic coatings obtained by thermal spray for decorative applications. Journal of the European Ceramic Society, 2012, 32, 3685-3692.	2.8	9
67	Study of the high temperature oxidation performance of Thermal Barrier Coatings with HVOF sprayed bond coat and incorporating a PVD ceramic interlayer. Ceramics International, 2012, 38, 6423-6429.	2.3	32
68	La proyección frÃa (CGs): Una alternativa a las tecnologÃas convencionales de deposición. Revista De Metalurgia, 2012, 48, 175-191.	0.1	9
69	Tribological Behavior of Bronze Composite Coatings Obtained by Plasma Thermal Spraying. Tribology Letters, 2011, 42, 263-273.	1.2	23
70	Caracterización de nuevos recubrimientos biocompatibles de hidroxiapatita-TiO ₂ obtenidos mediante Proyección Térmica de Alta Velocidad. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2011, 50, 59-64.	0.9	16
71	Proceso de molturación mecánica en medio seco, húmedo y criogénico de polvo de hierro dúctil nanoestructurado. Revista De Metalurgia, 2011, 47, 197-204.	0.1	2
72	Recubrimientos de materiales compuestos metal-cerámico obtenidos por nuevas tecnologÃas de proyección térmica: Proyección frÃa (CGS) y su resistencia al desgaste. Revista De Metalurgia, 2011, 47, 390-401.	0.1	3

JOSEP MARIA GUILEMANY

#	Article	IF	CITATIONS
73	Nanoscale characterization of FeAl-HVOF coatings. Surface and Coatings Technology, 2010, 205, 967-973.	2.2	11
74	Study of Ti deposition onto Al alloy by cold gas spraying. Surface and Coatings Technology, 2010, 205, 1096-1102.	2.2	54
75	Effect of the spraying process on the microstructure and tribological properties of bronze–alumina composite coatings. Surface and Coatings Technology, 2010, 205, 2184-2190.	2.2	41
76	Microstructure Evolution During Spark Plasma Sintering of Metastable (ZrO ₂ –3 mol%) Tj ETQq0 the American Ceramic Society, 2010, 93, 2864-2870.	0 0 rgBT / 1.9	Overlock 10 ⁻ 20
77	Study of Adhesion Relationship of Hydroxyapatite-Titania Coating Obtained by HVOF. Materials Science Forum, 2010, 636-637, 82-88.	0.3	6
78	Structure characterization and wear performance of NiTi thermal sprayed coatings. Smart Materials and Structures, 2010, 19, 085011.	1.8	17
79	Optimisation of HVOF thermal spray coatings for their implementation as MSWI superheater protectors. Corrosion Engineering Science and Technology, 2010, 45, 84-93.	0.7	22
80	Accuracy of acoustic rhinometry versus computed tomography in the evaluation of nasal cavity in patients with nasal polyposis. Rhinology, 2010, 48, 224-7.	0.7	4
81	Is There an Overlap between Sudden Neurosensorial Hearing Loss and Cardiovascular Risk Factors?. Audiology and Neuro-Otology, 2009, 14, 139-145.	0.6	68
82	Corrosion and Wear Studies of Cr3C2NiCr-HVOF Coatings Sprayed on AA7050 T7 Under Cooling. Journal of Thermal Spray Technology, 2009, 18, 353-363.	1.6	45
83	FeAl and NbAl3 Intermetallic-HVOF Coatings: Structure and Properties. Journal of Thermal Spray Technology, 2009, 18, 536-545.	1.6	18
84	United airways again: high prevalence of rhinosinusitis and nasal polyps in bronchiectasis. Allergy: European Journal of Allergy and Clinical Immunology, 2009, 64, 790-797.	2.7	76
85	United airways: the impact of chronic rhinosinusitis and nasal polyps in bronchiectasic patient's quality of life. Allergy: European Journal of Allergy and Clinical Immunology, 2009, 64, 1524-1529.	2.7	53
86	Microstructure and mechanical properties of near-eutectic ZrO2–60wt.% Al2O3 produced by quenched plasma spraying. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 506, 180-186.	2.6	46
87	Influence of liquid nitrogen quenching on the evolution of metastable phases during plasma spraying of (ZrO2–5wt.% Y2O3)–20wt.% Al2O3 coatings. Surface and Coatings Technology, 2009, 204, 149-156.	2.2	15
88	Corrosion behaviour of thermal sprayed nitinol coatings. Corrosion Science, 2009, 51, 171-180.	3.0	60
89	NiTi thermal sprayed coatings characterization. , 2009, , .		2

90 Wear of NiTi coatings obtained by thermal spraying. , 2009, , .

#	Article	IF	CITATIONS
91	Study of the mechanical properties of low carbon content HSLA steels. Revista De Metalurgia, 2009, 45, 424-431.	0.1	9
92	Study of the HVOF Ni-Based Coatings' Corrosion Resistance Applied on Municipal Solid-Waste Incinerators. Journal of Thermal Spray Technology, 2008, 17, 254-262.	1.6	34
93	Production and Characterization of Metastable ZrO2-Al2O3Coatings Obtained by APSÂ+ÂQuench. Journal of Thermal Spray Technology, 2008, 17, 360-364.	1.6	9
94	Erosion, Abrasive, and Friction Wear Behavior of Iron Aluminide Coatings Sprayed by HVOF. Journal of Thermal Spray Technology, 2008, 17, 762-773.	1.6	31
95	Cr3C2–NiCr and WC–Ni thermal spray coatings as alternatives to hard chromium for erosion–corrosion resistance. Surface and Coatings Technology, 2008, 202, 1405-1417.	2.2	175
96	Influence of HVOF parameters on the corrosion and wear resistance of WC-Co coatings sprayed on AA7050 T7. Surface and Coatings Technology, 2008, 202, 4746-4757.	2.2	102
97	Kinetic analysis of the austenitic grain growth in HSLA steel with a low carbon content. Materials Letters, 2008, 62, 3478-3480.	1.3	37
98	Erosion corrosion properties of HVOF coatings for municipal solid waste incinerator protection. Corrosion Engineering Science and Technology, 2008, 43, 38-45.	0.7	6
99	Nanostructured Cermet Coatings with Enhanced Properties Produced by HVOF Thermal Spray. Materials Science Forum, 2008, 587-588, 1024-1028.	0.3	4
100	High-temperature oxidation of Fe40Al coatings obtained by HVOF thermal spray. Intermetallics, 2007, 15, 1384-1394.	1.8	53
101	WC-CoCr coatings sprayed by high velocity oxygen-fuel (HVOF) flame on AA7050 aluminum alloy: electrochemical behavior in 3.5% NaCl solution. Materials Research, 2007, 10, 377-385.	0.6	20
102	Adhesion improvements of Thermal Barrier Coatings with HVOF thermally sprayed bond coats. Surface and Coatings Technology, 2007, 201, 4694-4701.	2.2	158
103	Effect of microalloying elements on the austenitic grain growth in a low carbon HSLA steel. Materials Letters, 2007, 61, 2389-2392.	1.3	78
104	Prognostic significance of surgical margins in transoral CO2 laser microsurgery for T1–T4 pharyngo-laryngeal cancers. European Archives of Oto-Rhino-Laryngology, 2007, 264, 1045-1051.	0.8	52
105	Effect of Heat Treatments on HVOF Hydroxyapatite Coatings. Journal of Thermal Spray Technology, 2007, 16, 220-228.	1.6	59
106	TEM Study of Bainitic Low-Carbon HSLA Steel: The Orientation Relationships of Cementite. Praktische Metallographie/Practical Metallography, 2007, 44, 334-346.	0.1	2
107	Comparative study of Cr3C2–NiCr coatings obtained by HVOF and hard chromium coatings. Corrosion Science, 2006, 48, 2998-3013.	3.0	131
108	The impact of bronchiectasis associated to sinonasal disease on quality of life. Respiratory Medicine, 2006, 100, 1997-2003.	1.3	39

#	Article	IF	CITATIONS
109	Thermal stability of the martensitic transformation of Cu–Al–Ni–Mn–Ti. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 723-725.	2.6	23
110	TEM study on the microstructure of Cu–Al–Ag shape memory alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 726-729.	2.6	13
111	Role of external applied stress on the two-way shape memory effect. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 431-435.	2.6	26
112	Influence of spraying parameters on the electrochemical behaviour of HVOF thermally sprayed stainless steel coatings in 3.4% NaCl. Surface and Coatings Technology, 2006, 200, 3064-3072.	2.2	41
113	Evaluation of residual stresses of thermal barrier coatings with HVOF thermally sprayed bond coats using the Modified Layer Removal Method (MLRM). Surface and Coatings Technology, 2006, 200, 5963-5972.	2.2	60
114	The enhancement of the properties of WC-Co HVOF coatings through the use of nanostructured and microstructured feedstock powders. Surface and Coatings Technology, 2006, 201, 1180-1190.	2.2	151
115	Studies of Fe–40Al coatings obtained by high velocity oxy-fuel. Surface and Coatings Technology, 2006, 201, 2072-2079.	2.2	46
116	Load and sliding velocity effect in dry sliding wear behavior of CuZnAl shape memory alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2006, 37, 1175-1181.	1.1	8
117	Electrochemical and Structural Characterization of Heat-Treated Cr[sub 3]C[sub 2]–NiCr Coatings. Journal of the Electrochemical Society, 2006, 153, B434.	1.3	24
118	Thermal spraying methods for protection against wear. , 2006, , 249-301.		2
119	High-Velocity Oxyfuel Cr ₃ C ₂ -NiCr Replacing Hard Chromium Coatings. Journal of Thermal Spray Technology, 2005, 14, 335-341.	1.6	97
120	An aesthetic deformity: Madelung's disease. Acta Oto-Laryngologica, 2005, 125, 328-330.	0.3	25
121	Hyoid and laryngeal chondrosarcomas have different clinicopathologic features. Acta Oto-Laryngologica, 2005, 125, 683-686.	0.3	6
122	Electrochemical behavior of thermally sprayed stainless steel coatings in 3.4% NaCl solution. Corrosion Science, 2005, 47, 605-620.	3.0	62
123	Tribological Study of Plasma Hydroxyapatite Coatings. Key Engineering Materials, 2004, 254-256, 383-386.	0.4	8
124	The influence of gun transverse speed on electrochemical behaviour of thermally sprayed Cr3C2–NiCr coatings in 0.5 M H2SO4 solution. Electrochimica Acta, 2004, 49, 627-634.	2.6	21
125	Clinical and epidemiological study of vertigo at an outpatient clinic. Acta Oto-Laryngologica, 2004, 124, 49-52.	0.3	36
126	TribologÃa de recubrimientos Cermet/NiCrBSi depositados mediante HVOF. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2004, 43, 483-487.	0.9	6

#	Article	IF	CITATIONS
127	Tribological study of NiCrBSi coating obtained by different processes. Tribology International, 2003, 36, 181-187.	3.0	256
128	Acoustic emission study on WC–Co thermal sprayed coatings. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 352, 55-63.	2.6	37
129	A one-cycle training technique for copper-based shape memory alloys. Journal of Materials Processing Technology, 2003, 139, 117-119.	3.1	11
130	Electrochemical Characterisation Study of Coatings Obtained by High Velocity Oxy-Fuel Spraying (HVOF). Portugaliae Electrochimica Acta, 2003, 21, 141-154.	0.4	1
131	Effects of thickness coating on the electrochemical behaviour of thermal spray Cr3C2–NiCr coatings. Surface and Coatings Technology, 2002, 153, 107-113.	2.2	84
132	Role of heat treatments in the improvement of the sliding wear properties of Cr3C2–NiCr coatings. Surface and Coatings Technology, 2002, 157, 207-213.	2.2	87
133	Electrochemical behaviour of thermally sprayed Cr3C2–NiCr coatings in 0.5 M H2SO4 media. Journal of Applied Electrochemistry, 2002, 32, 1287-1295.	1.5	22
134	In-flight oxidation of composite powder particles during thermal spraying. International Journal of Heat and Mass Transfer, 2001, 44, 4667-4677.	2.5	18
135	Evaluation of Wear Damage in Zirconia Plasma-Sprayed Coatings Using Scanning White Light Interferometry. Journal of Thermal Spray Technology, 2001, 10, 142-146.	1.6	7
136	Role of three-body abrasion wear in the sliding wear behaviour of WC–Co coatings obtained by thermal spraying. Surface and Coatings Technology, 2001, 140, 141-146.	2.2	76
137	Use of scanning white light interferometry in the characterization of wear mechanisms in thermal-sprayed coatings. Materials Characterization, 2001, 47, 307-314.	1.9	25
138	Evaluación de la resistencia al choque térmico de recubrimientos de estructura gradual obtenidos mediante proyección plasma. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2001, 40, 472-475.	0.9	1
139	Effect of small γ-precipitates on the two-way shape memory effect in Cu–Zn–Al alloys. Materials & Design, 2000, 21, 557-559.	5.1	10
140	Effect of Small γ Precipitates on the Two-way Shape Memory Effect in a Cu–Zn–Al Alloy. Materials Characterization, 2000, 44, 365-370.	1.9	2
141	Development of Coating Structure and Adhesion During High Velocity Oxygen-Fuel Spraying of WC-Co Powder on a Copper Substrate. Journal of Thermal Spray Technology, 2000, 9, 100-106.	1.6	9
142	Effect of wave processes on splat formation during thermal spraying. Materials Letters, 2000, 42, 321-325.	1.3	3
143	Formation of splats during thermal spraying of composite powder particles. Materials Letters, 2000, 42, 46-51.	1.3	15
144	Study of γ precipitates induced by the stabilized stress-induced martensite (SSIM) training method in Cu–Zn–Al alloys. Intermetallics, 2000, 8, 703-707.	1.8	6

JOSEP MARIA GUILEMANY

#	Article	IF	CITATIONS
145	In-flight behaviour of steel particles during plasma spraying. Journal of Materials Processing Technology, 1999, 87, 37-45.	3.1	11
146	Heat transfer during the formation of an HVOF sprayed WC–Co coating on a copper substrate. Journal of Materials Processing Technology, 1999, 96, 1-8.	3.1	15
147	Effect of Oxidation on Droplet Flattening and Splat-Substrate Interaction in Thermal Spraying. Journal of Thermal Spray Technology, 1999, 8, 523-530.	1.6	45
148	Flattening of Droplets and Formation of Splats in Thermal Spraying: A Review of Recent Work—Part 2. Journal of Thermal Spray Technology, 1999, 8, 301-314.	1.6	26
149	Flattening of Droplets and Formation of Splats in Thermal Spraying: A Review of Recent Work—Part 1. Journal of Thermal Spray Technology, 1999, 8, 87-101.	1.6	44
150	Characterization of the W2C phase formed during the high velocity oxygen fuel spraying of a WC + 12 pct Co powder. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1999, 30, 1913-1921.	1.1	126
151	Energetic evaluation for inducing the thermoelastic martensitic transformation by mechanical stress in Cu–Zn–Al single crystals. Intermetallics, 1999, 7, 699-704.	1.8	4
152	Influence of Oxidation on Coating Formation in Thermal Spraying. Journal of Materials Processings and Manufacturing Science, 1999, 7, 271-286.	0.1	1
153	Thermal Processes in HVOF Sprayed WC-Co Coating on a Copper Substrate. Journal of Thermal Spray Technology, 1998, 7, 191-192.	1.6	5
154	Kinetic grain growth in Î ² -copper shape memory alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1998, 241, 114-121.	2.6	8
155	Modelling of the in-flight behaviour of stainless steel powder particles in high velocity oxy-fuel spraying. Journal of Materials Processing Technology, 1998, 79, 213-216.	3.1	5
156	Influence of droplet impact angle on droplet-substrate mechanical interaction in thermal spraying. Materials Letters, 1998, 33, 315-319.	1.3	11
157	Effect of substrate deformation on droplet flattening in thermal spraying. Materials Letters, 1998, 35, 324-328.	1.3	6
158	Influence of wetting and surface effects on splat formation during thermal spraying. Materials Letters, 1998, 37, 132-137.	1.3	7
159	Oxidation of coatings in thermal spraying. Materials Letters, 1998, 37, 231-235.	1.3	31
160	On the stabilisation of martensite during direct quenching and training of some Cuî—,Znî—,Alî—,Zr springs. Intermetallics, 1998, 6, 15-19.	1.8	5
161	Effect of cobalt addition on grain growth kinetics in Cuî—,Znî—,Al shape memory alloys. Intermetallics, 1998, 6, 445-450.	1.8	10
162	Improving the Marine Water Corrosion Resistance of HVOF Steels Coated with WC+12%Co+4%Cr. Science and Engineering of Composite Materials, 1998, 7, 205-208.	0.6	5

JOSEP MARIA GUILEMANY

#	Article	IF	CITATIONS
163	Electrochemical Corrosion of Cermet Coatings in Artificial Marine Water. Materials Science Forum, 1998, 289-292, 667-678.	0.3	5
164	Variation of friction coefficient with percentage of metallic matrix in WC–Co coatings sprayed by HVOF. Surface Engineering, 1998, 14, 129-132.	1.1	10
165	Corrosion resistance of HVOF WC–Co and TiC/Ni–Ti coatings sprayed on commercial steel. Surface Engineering, 1998, 14, 133-135.	1.1	24
166	Relación estructura-propiedades en aleaciones inteligentes con memoria de forma Cu-Al-Ag de alta temperatura de transformación martensÃŧica termoelástica. Revista De Metalurgia, 1998, 34, 281-285.	0.1	1
167	Development of substrate-coating adhesion in thermal spraying. International Materials Reviews, 1997, 42, 117-136.	9.4	75
168	Modeling of Substrate-Coating Thermal Interaction During High Velocity Oxy-Fuel (HVOF) Spraying of WC-Ni Powder. Materials and Manufacturing Processes, 1997, 12, 877-899.	2.7	2
169	Microstructure Formation of HVOF Sprayed WC-Ni Coatings Deposited on Low Alloy Steel. Materials and Manufacturing Processes, 1997, 12, 901-909.	2.7	6
170	Effect of droplet impact angle on flattening of splat in thermal spraying. Materials Letters, 1997, 32, 197-201.	1.3	6
171	Specimen preparation method for the characterization in the transmission electron microscope of novel cermet powders used in thermal spraying processes. Materials Characterization, 1997, 38, 149-154.	1.9	5
172	Transient liquid phase (TLP) diffusion bonding of a copper based shape memory alloy using silver as interlayer. Scripta Materialia, 1997, 37, 861-867.	2.6	9
173	Coating - substrate bonding after HVOF thermally spraying WC-Co on to a Ti-6%Al-4%V alloy. Journal of Materials Science Letters, 1997, 16, 1043-1044.	0.5	2
174	Activation energies for the mobility of grain boundaries in β-copper shape memory alloys. Journal of Materials Science Letters, 1997, 16, 2012-2015.	0.5	2
175	Flattening of composite powder particles during thermal spraying. Journal of Thermal Spray Technology, 1997, 6, 353-360.	1.6	14
176	Interface structures of high velocity oxy-fuel sprayed WC-Co coating on a copper substrate. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1997, 232, 119-128.	2.6	10
177	Investigation of droplet flattening during thermal spraying. Surface and Coatings Technology, 1997, 89, 82-89.	2.2	13
178	Friction and stored elastic energy in Cuî—Znî—Al single crystals with pseudoelastic behaviour. Thermochimica Acta, 1997, 290, 167-171.	1.2	3
179	Formation of Structure of HVOF Sprayed WC-Co Coating on a Copper Substrate. , 1997, , .		1
180	Modelizacion de la formación de recubrimientos de WC-Co por proyección HVOF sobre sustratos de cobre. Revista De Metalurgia, 1997, 33, 287-297.	0.1	0

#	Article	IF	CITATIONS
181	Influence of solidification on the flattening of droplets during thermal spraying. Materials Letters, 1996, 28, 71-75.	1.3	15
182	Droplet-substrate impact interaction in thermal spraying. Materials Letters, 1996, 28, 331-335.	1.3	23
183	Analysis of splat formation during flattening of thermally sprayed droplets. Materials Letters, 1996, 29, 185-190.	1.3	13
184	Influence of surface roughness on the flattening of powder particles during thermal spraying. Journal of Thermal Spray Technology, 1996, 5, 207-214.	1.6	34
185	Microstructural examination of HVOF chromium carbide coatings for high-temperature applications. Journal of Thermal Spray Technology, 1996, 5, 483-489.	1.6	51
186	Investigation of the development of coating structure during high velocity oxy-fuel (HVOF) spraying of WC-Ni powder particles. Surface and Coatings Technology, 1996, 82, 114-120.	2.2	15
187	The formation of coating shrinkage porosity in the process of thermal spraying. Journal of Materials Processing Technology, 1996, 58, 227-232.	3.1	14
188	Formation of powder particles during thermal interaction of liquid and solidified drops in the process of metal atomization. Journal of Materials Processing Technology, 1996, 62, 216-224.	3.1	4
189	Influence of in-flight dissolution process on composite powder particle (WCî—,Ni) behaviour during high velocity oxy-fuel spraying. Surface and Coatings Technology, 1996, 81, 136-145.	2.2	12
190	Influence of thermal processes on coating formation during high velocity oxy-fuel (HVOF) spraying of WC-Ni powder particles. Surface and Coatings Technology, 1996, 82, 121-129.	2.2	23
191	Relationships between structure and hardness developed during the high temperature ageing of a smart Cu-based alloy. Journal of Materials Science, 1996, 31, 4981-4984.	1.7	7
192	Dynamic processes during high velocity oxyfuel spraying. International Materials Reviews, 1996, 41, 13-32.	9.4	56
193	Dynamic processes during high velocity oxyfuel spraying. International Materials Reviews, 1996, 41, 13-32.	9.4	10
194	Substrate–coating thermal interaction during high velocity oxyfuel spraying. Materials Science and Technology, 1995, 11, 810-819.	0.8	27
195	Substrate–coating thermal interaction during high velocity oxyfuel spraying Part 2 – Structure formation. Materials Science and Technology, 1995, 11, 1052-1059.	0.8	11
196	Substrate/coating interface structure of we-co high velocity oxygen fuel sprayed coating on low alloy steel. Materials Science and Technology, 1995, 11, 961-966.	0.8	17
197	Caractérisation de l'effet mémoire double sens obtenu par la martensite stabilisée développée sou contrainte dans l'alliage CuZnAlZr. Revue De Metallurgie, 1995, 92, 607-614.	^{JS} 0.3	2
198	Powder particle structure formation during solidification in the process of metal atomization. Journal of Materials Processing Technology, 1995, 54, 249-260.	3.1	1

#	Article	IF	CITATIONS
199	Prediction of powder particle behavior during high-velocity oxyfuel spraying. Journal of Thermal Spray Technology, 1995, 4, 287-296.	1.6	16
200	Formation of structure of WC-Co coatings on aluminum alloy substrate during high-velocity oxygen-fuel (HVOF) spraying. Journal of Thermal Spray Technology, 1995, 4, 401-407.	1.6	10
201	A New Cu-Based SMA with Extremely High Martensitic Transformation Temperatures. European Physical Journal Special Topics, 1995, 05, C2-361-C2-365.	0.2	8
202	Springs with two Way Shape Memory Obtained by Stabilised Stress Induced Martensite Training Methods. European Physical Journal Special Topics, 1995, 05, C2-379-C2-384.	0.2	1
203	Microstructure characterization of WC-Ni coatings obtained by HVOF thermal spraying. Scripta Metallurgica Et Materialia, 1995, 33, 55-61.	1.0	32
204	Comparison of two way shape memory effect for a poly, BI and single crystal of A Cu-Zn-Al-Co alloy. Scripta Metallurgica Et Materialia, 1995, 32, 2029-2033.	1.0	5
205	The influence of WCî—,Co HVOF thermal spraying on the microstructure of an Alî—,4%Cu alloy substrate. Scripta Metallurgica Et Materialia, 1995, 33, 1055-1062.	1.0	14
206	Flattening of thermally sprayed particles. Materials Letters, 1995, 22, 209-213.	1.3	22
207	Formation of chemical inhomogeneity in the coating structure during high velocity oxy-fuel (HVOF) spraying. Materials Letters, 1995, 25, 285-289.	1.3	15
208	Mechanism of two Way Shape Memory Effect Obtained by Stabilised Stress Induced Martensite. European Physical Journal Special Topics, 1995, 05, C2-355-C2-359.	0.2	1
209	Interacción térmica recubrimiento-sustrato en la proyección a alta velocidad (HVOF) de partÃculas (polvo) de WC-Co. Revista De Metalurgia, 1995, 31, 156-165.	0.1	1
210	Estudio de fatiga y fractura de monocristales, bicristales y policristales de la aleación Cu-18,2Zn-7,0Al con memoria de forma. Revista De Metalurgia, 1995, 31, 222-227.	0.1	1
211	Two-way shape memory effects after the training of bicrystalline Cu-Zn-Al-Co by stabilized stress induced martensite. Journal of Materials Science Letters, 1994, 13, 1195-1197.	0.5	Ο
212	Analysis of coating gas porosity development during thermal spraying. Surface and Coatings Technology, 1994, 70, 57-68.	2.2	36
213	Modelling of particle movement and thermal behaviour during high velocity oxy-fuel spraying. Surface and Coatings Technology, 1994, 63, 181-187.	2.2	43
214	Investigation of coating porosity formation during high velocity oxy-fuel (HVOF) spraying. Materials Letters, 1994, 18, 304-308.	1.3	64
215	Kinetic equation for the decomposition phenomena of a Cu-20.2 Zn-6.6 Al-0.7 Co shape memory alloy. Materials Letters, 1994, 20, 19-22.	1.3	2
216	On the mechanism of two way shape memory effect obtained by stabilised stress induced martensite. Scripta Metallurgica Et Materialia, 1994, 30, 319-323.	1.0	11

#	Article	IF	CITATIONS
217	Effect of training time on two way shape memory effect obtained by stabilised stress induced martensite. Scripta Metallurgica Et Materialia, 1994, 30, 59-61.	1.0	15
218	Thermal interaction between WC-Co coating and steel substrate in process of HVOF spraying. Scripta Metallurgica Et Materialia, 1994, 31, 915-920.	1.0	21
219	Study of interface interactions for metal-metal and metal-ceramic coatings obtained by plasma and HVOF spraying. Scripta Metallurgica Et Materialia, 1994, 31, 1121-1126.	1.0	6
220	Isothermal ageing at low temperatures of a smart material: a Cuî—,Znî—,Alî—,Co shape memory alloy. Scripta Metallurgica Et Materialia, 1994, 31, 927-931.	1.0	2
221	Characterisation of WC–Ni Powder for High Velocity Oxyfuel Spraying. Powder Metallurgy, 1994, 37, 219-221.	0.9	6
222	Characterisation of Cr ₃ C ₂ –NiCr Cermet Powder for High Velocity Oxyfuel Spraying. Powder Metallurgy, 1994, 37, 289-292.	0.9	7
223	Grain growth in Cu-Zn-Al-Mn shape-memory alloy. Journal of Materials Science, 1993, 28, 1542-1544.	1.7	2
224	Mechanical-property relationships of Co/WC and Coî—,Niî—,Fe/WC hard metal alloys. International Journal of Refractory Metals and Hard Materials, 1993, 12, 199-206.	1.7	20
225	The topology of hard metals (binder phase or filler phase?). International Journal of Refractory Metals and Hard Materials, 1993, 12, 217-223.	1.7	1
226	Characterization of (W, Ti)C-Ni powder for thermal spraying. Surface and Coatings Technology, 1993, 58, 173-177.	2.2	7
227	The influence of the electron-to-atom ratio on the martensitic transformation enthalpy and entropy values in Cuî—,Znî—,Al shape memory alloys. Journal of Alloys and Compounds, 1993, 194, L9-L10.	2.8	0
228	A Direct Method for Determining the Recrystallization of a Cold Rolled Copper. Materials Science Forum, 1993, 113-115, 655-660.	0.3	0
229	Effect of grain size on the pseudoelastic properties of Cu-20.8Zn-6.1Al shape-memory alloy. Journal of Materials Science Letters, 1993, 12, 6-7.	0.5	2
230	X-Ray Diffraction Analysis of Titanium Carbonitride 30/70 and 70/30 Solid Solutions. Powder Diffraction, 1992, 7, 34-35.	0.4	20
231	Grain growth of Cu-Al-Mn shape memory alloy in ß phase with manganese silicide precipitates. Scripta Metallurgica Et Materialia, 1992, 26, 1285-1290.	1.0	0
232	A comparison of the two-way shape-memory effect achieved by stabilised stress-induced martensite training in β and martensitic Cu-Zn-Al-Co alloys. Materials Letters, 1992, 13, 105-108.	1.3	10
233	Mechanical cycles in multivariant martensitic single-crystal Cu-Zn-Al shape memory alloys. Journal of Materials Science, 1992, 27, 3211-3214.	1.7	6
234	Structural changes in compacted graphite cast irons arising from thermal fatigue cycles obtained by the resistance polished surface technique. Journal of Materials Science Letters, 1992, 11, 1381-1384.	0.5	3

#	Article	IF	CITATIONS
235	The influence of deformation imposed during training on the two-way shape-memory effect obtained in a Cu-Zn-Al-Co alloy by the stabilized stress-induced martensite training method. Journal of Materials Science Letters, 1992, 11, 964-967.	0.5	5
236	Pseudoelastic hysteresis in Cu-Zn-Al shape-memory single crystals. Journal of Materials Science Letters, 1992, 11, 493-495.	0.5	5
237	The determination of the influence of heat treatment on the martensitic transformation in Cu-Zn-Al-Mn shape-memory alloy by calorimetry and acoustic emission techniques. Thermochimica Acta, 1992, 205, 75-85.	1.2	8
238	The determination of the electron to atom ratio interval corresponding to the change in the martensitic structure from α′ to β′ in Cuznal shape memory alloys. Materials Research Bulletin, 1992, 27, 117-122.	2.7	13
239	SEM Characterization of Structural Modifications of Compacted Cast Iron by Atypical Heat Treatments / REM-Charakterisierung von Gefügeäderungen in Gußeisen mit Kompaktgraphit nach atypischer Wämebehandlung. Praktische Metallographie/Practical Metallography, 1992, 29, 322-333.	0.1	0
240	TWO WAY SHAPE MEMORY EFFECT OBTAINED BY STABILISED STRESS INDUCED MARTENSITE IN Cu-Zn-Al-Co AND Cu-Al-Mn ALLOYS. European Physical Journal Special Topics, 1991, 01, C4-457-C4-462.	0.2	3
241	The Gibbs free energies of thermal and stress-induced martensite formation in Cu-Zn-Al single crystal shape-memory alloys. Thermochimica Acta, 1991, 182, 193-199.	1.2	4
242	The martensitic transformation entropy values of thermal and mechanical origin in shape memory Cu-Zn-Al single crystals. Thermochimica Acta, 1991, 190, 185-189.	1.2	1
243	The thermodynamics of Cu-Zn-Al-Mn shape-memory alloys. Thermochimica Acta, 1991, 191, 179-186.	1.2	6
244	TEM study of β and martensite in Cuî—,Alî—,Mn shape memory alloys. Materials Characterization, 1991, 26, 23-28.	1.9	14
245	Metallographic structure of bainitic compacted graphite cast irons. Materials Characterization, 1991, 26, 143-148.	1.9	6
246	Kinetic grain growth in Cu-Zn-Al shape memory alloys. Journal of Materials Science, 1991, 26, 4626-4630.	1.7	26
247	The influence of stress-stabilized martensite on the martensitic transformation in Cu-18.10Zn-7.44Al shape-memory single crystals by compression tests. Journal of Materials Science Letters, 1991, 10, 1016-1018.	0.5	2
248	Mechanism of bainitic transformation in compacted graphite cast irons. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1990, 21, 895-899.	1.4	7
249	The influence of grain boundaries on the transformation temperatures of Cu/1bZn/1bAl shape memory alloys. Materials Research Bulletin, 1990, 25, 1325-1332.	2.7	16
250	The relationship between the stress to induce martensitic transformation and chemical composition in Cu-Zn-Al shape memory single crystals. Journal of Materials Science Letters, 1990, 9, 1241-1242.	0.5	0
251	Relationships between microstructure and properties of unalloyed compacted graphite cast irons. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1990, 130, 241-246.	2.6	5
252	Differences in the singular temperatures of martensitic transformation measured by calorimetry and stress-strain methods in single crystals of shape-memory Cu-Zn-Al alloys. Thermochimica Acta, 1990, 161, 23-27.	1.2	3

#	Article	IF	CITATIONS
253	The relationship between chemical composition and transformation temperatures, Ms and As, in polycrystals and single crystals of Cu-Zn-Al shape-memory alloys. Thermochimica Acta, 1990, 167, 129-138.	1.2	13
254	Stabilised stress induced martensite - its use in two way shape memory training processes. Scripta Metallurgica Et Materialia, 1990, 24, 241-244.	1.0	9
255	The influence of training on the two way shape memory effect obtained by stabilised stress induced martensite. Scripta Metallurgica Et Materialia, 1990, 24, 1941-1945.	1.0	12
256	Determination of the relationship between Ms and As transformation temperatures and chemical composition for Cu-Al-Zn-Mn shape memory alloys. Materials Letters, 1990, 10, 145-148.	1.3	5
257	Shape memory properties of a Cuî—,Znî—,Al multivariant martensite single crystal under stress and its mechanical behaviour. Materials Letters, 1990, 9, 242-244.	1.3	0
258	TEM study of order, structure and defects of <i>β</i> and martensite in Cu-Al-Mn shape memory alloys. Proceedings Annual Meeting Electron Microscopy Society of America, 1990, 48, 188-189.	0.0	0
259	SEM study of diffusion bonded interfaces in Cu-Al(11,46)-Mn(6,62) and Cu-Al(6,94)- Zn(18,86) copper-based shape memory alloys. Proceedings Annual Meeting Electron Microscopy Society of America, 1990, 48, 1004-1005.	0.0	0
260	Influence of grain growth on the martensitic transformation in βî—,Cuî—,Znî—,Al memory alloys. Materials Research Bulletin, 1989, 24, 445-452.	2.7	21
261	Study by SEM-EDS of the in situ dynamic leaching of mercury ores. Metallurgical and Materials Transactions B - Process Metallurgy and Materials Processing Science, 1988, 19, 165-170.	0.5	0
262	Martensitic transformation differences on poly and single β-Cu-Zn-Al crystals. Materials Research Bulletin, 1988, 23, 1585-1590.	2.7	18
263	Two way memory effect due to stabilized martensite. Scripta Metallurgica, 1988, 22, 261-264.	1.2	23
264	Martensitic transformation: an approach to simultaneous study by microscopy, calorimetry and acoustic emission. Thermochimica Acta, 1986, 99, 19-25.	1.2	11
265	Metallographic Differences Between Compacted Graphite Cast Iron and Vermicular Graphite Cast Iron / Unterschiede in der Gefügeausbildung von Gußeisen mit Kompaktgraphit und Gußeisen mit Graupelgraphit. Praktische Metallographie/Practical Metallography, 1984, 21, 299-306.	0.1	6
266	Oxidation Behaviour of Stainles Steel Matrix with TiC and TiC+TiB ₂ SHS Powders in a Thermal Spray Process. Defect and Diffusion Forum, 0, 289-292, 455-460.	0.4	2
267	Structural Characterization of Intermetallic NiTi Coatings Obtained by Thermal Spray Technologies. Materials Science Forum, 0, 636-637, 1084-1090.	0.3	3