Chang Hyun Ko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4020249/publications.pdf Version: 2024-02-01

Сналс Нуши Ко

#	Article	IF	CITATIONS
1	Valorization of hazardous COVID-19 mask waste while minimizing hazardous byproducts using catalytic gasification. Journal of Hazardous Materials, 2022, 423, 127222.	6.5	33
2	Hydrogen-rich gas production via steam gasification of food waste over basic oxides (MgO/CaO/SrO) promoted-Ni/Al2O3 catalysts. Chemosphere, 2022, 287, 132224.	4.2	18
3	Simultaneous impregnation of Ni and an additive via one-step melt-infiltration: Effect of alkaline-earth metal (Ca, Mg, Sr, and Ba) addition on Ni/γ-Al2O3 for CO2 methanation. Chemical Engineering Journal, 2022, 428, 131393.	6.6	19
4	Optimization of nano-catalysts for application in compact reformers. Chemical Engineering Journal, 2022, 431, 134299.	6.6	42
5	Production of H2- and CO-rich syngas from the CO2 gasification of cow manure over (Sr/Mg)-promoted-Ni/Al2O3 catalysts. International Journal of Hydrogen Energy, 2022, 47, 37218-37226.	3.8	10
6	Enhancement in nickel-silica interface generation by surfactant-assisted melt-infiltration: Surfactant selection and application in CO2 hydrogenation. Chemical Engineering Journal, 2022, 437, 135166.	6.6	5
7	Enhanced CO2 electroconversion of Rhodobacter sphaeroides by cobalt-phosphate complex assisted water oxidation. Bioelectrochemistry, 2022, 145, 108102.	2.4	4
8	Bifunctional metal doping engineering of Ni-supported alumina catalyst for dry methane reforming. Journal of Environmental Chemical Engineering, 2022, 10, 108058.	3.3	12
9	Biohydrogen production from catalytic conversion of food waste via steam and air gasification using eggshell- and homo-type Ni/Al2O3 catalysts. Bioresource Technology, 2021, 320, 124313.	4.8	59
10	Mesoporous Titania as a Support of Gallium-Based Catalysts for Enhanced Ethane Dehydrogenation Performance. Catalysis Letters, 2021, 151, 2748-2761.	1.4	4
11	Impregnation of probiotics into porous TiO2 support for enhanced viability. Korean Journal of Chemical Engineering, 2021, 38, 475-479.	1.2	1
12	Effect of eggshell- and homo-type Ni/Al2O3 catalysts on the pyrolysis of food waste under CO2 atmosphere. Journal of Environmental Management, 2021, 294, 112959.	3.8	16
13	<scp>Solidâ€State</scp> Pseudomorphic Synthesis of Hollow Silica Nanospheres Using Cyclic Diammonium Molecules. Bulletin of the Korean Chemical Society, 2021, 42, 463-466.	1.0	2
14	Egg-shell-type Ni supported on MgAl2O4 pellets as catalyst for steam methane reforming: Enhanced coke-resistance and pellet stability. Catalysis Today, 2020, 352, 157-165.	2.2	19
15	Ni catalysts for dry methane reforming prepared by A-site exsolution on mesoporous defect spinel magnesium aluminate. Applied Catalysis A: General, 2020, 602, 117694.	2.2	40
16	Enhanced CO2 Methanation Reaction in C1 Chemistry over a Highly Dispersed Nickel Nanocatalyst Prepared Using the One-Step Melt-Infiltration Method. Catalysts, 2020, 10, 643.	1.6	7
17	Elevated conversion of CO2 to versatile formate by a newly discovered formate dehydrogenase from Rhodobacter aestuarii. Bioresource Technology, 2020, 305, 123155.	4.8	23
18	Effect of calcination temperature on the association between free NiO species and catalytic activity of Niâ ''Ce0.6Zr0.4O2 deoxygenation catalysts for biodiesel production. Renewable Energy, 2019, 131, 144-151.	4.3	24

Chang Hyun Ko

#	Article	IF	CITATIONS
19	Effect of cobalt metal loading on Fischer–Tropsch synthesis activities over Co/γ-Al2O3 catalysts: CO conversion, C5+ productivity, and α value. Research on Chemical Intermediates, 2019, 45, 4417-4429.	1.3	7
20	Preparation of Ni-based egg-shell-type catalyst on cylinder-shaped alumina pellets and its application for hydrogen production via steam methane reforming. International Journal of Hydrogen Energy, 2019, 44, 5314-5323.	3.8	15
21	Insight into the effect of metal and support for mild hydrodeoxygenation of lignin-derived phenolics to BTX aromatics. Chemical Engineering Journal, 2019, 377, 120121.	6.6	51
22	Acetaldehyde removal and increased H2/CO gas yield from biomass gasification over metal-loaded Kraft lignin char catalyst. Journal of Environmental Management, 2019, 232, 330-335.	3.8	12
23	Enhanced electrochemical performance for EDLC using ordered mesoporous carbons (CMK-3 and) Tj ETQq1 1 0. 90-97.	.784314 rg 2.8	gBT /Overloc 62
24	Mild hydrodeoxygenation of phenolic lignin model compounds over a FeReO _x /ZrO ₂ catalyst: zirconia and rhenium oxide as efficient dehydration promoters. Green Chemistry, 2018, 20, 1472-1483.	4.6	59
25	Ordered mesoporous carbon CMK-8 cathodes for high-power and long-cycle life sodium hybrid capacitors. Journal of Alloys and Compounds, 2018, 743, 639-645.	2.8	26
26	Metallic nickel supported on mesoporous silica as catalyst for hydrodeoxygenation: effect of pore size and structure. Research on Chemical Intermediates, 2018, 44, 3723-3735.	1.3	16
27	Rapid evaluation of coke resistance in catalysts for methane reforming using low steam-to-carbon ratio. Catalysis Today, 2018, 309, 140-146.	2.2	27
28	Facile production of biofuel via solvent-free deoxygenation of oleic acid using a CoMo catalyst. Applied Catalysis B: Environmental, 2018, 239, 644-653.	10.8	38
29	Petroleum like biodiesel production by catalytic decarboxylation of oleic acid over Pd/Ce-ZrO2 under solvent-free condition. Applied Catalysis A: General, 2018, 563, 163-169.	2.2	24
30	Hydrodeoxygenation of Pyrolysis Bio-Oil Over Ni Impregnated Mesoporous Materials. Journal of Nanoscience and Nanotechnology, 2018, 18, 1331-1335.	0.9	3
31	Catalytic Pyrolysis of Korean Pine (Pinus koraiensis) Nut Shell Over Mesoporous Al2O3. Journal of Nanoscience and Nanotechnology, 2018, 18, 1351-1355.	0.9	1
32	Catalytic Pyrolysis of <i>Pinus densiflora</i> Over Mesoporous Al ₂ O ₃ Catalysts. Journal of Nanoscience and Nanotechnology, 2018, 18, 6300-6303.	0.9	6
33	Preparation of egg-shell-type Ni/Ru bimetal alumina pellet catalysts: Steam methane reforming for hydrogen production. International Journal of Hydrogen Energy, 2017, 42, 18350-18357.	3.8	32
34	Catalytic Hydrodeoxygenation of Bio-Oils Derived from Pyrolysis of Cork Oak Using Supercritical Ethanol. Journal of Nanoscience and Nanotechnology, 2017, 17, 2674-2677.	0.9	3
35	Understanding the Effect of NO Adsorption on Potassium-Promoted Co3O4 for N2O Decomposition. Catalysis Letters, 2017, 147, 2886-2892.	1.4	7
36	Enhancement of C O bond cleavage to afford aromatics in the hydrodeoxygenation of anisole over ruthenium-supporting mesoporous metal oxides. Applied Catalysis A: General, 2017, 544, 84-93.	2.2	62

Chang Hyun Ko

#	Article	IF	CITATIONS
37	Facile preparation of egg-shell-type pellet catalysts using immiscibility between hydrophobic solvent and hydrophilic solution: Enhancement of catalytic activity due to position control of metallic nickel inside alumina pellet. Applied Catalysis A: General, 2017, 530, 211-216.	2.2	19
38	Comparison between unsupported mesoporous Co3O4 and supported Co3O4 on mesoporous silica as catalysts for N2O decomposition. Catalysis Communications, 2016, 82, 50-54.	1.6	29
39	Catalytic Hydrodeoxygenation of Bio-oil Model Compounds over Pt/HY Catalyst. Scientific Reports, 2016, 6, 28765.	1.6	133
40	Bio-Diesel Production from Deoxygenation Reaction Over Ce _{0.6} Zr _{0.4} O ₂ Supported Transition Metal (Ni, Cu, Co, and Mo) Catalysts. Journal of Nanoscience and Nanotechnology, 2016, 16, 4587-4592.	0.9	13
41	Catalytic upgrading of lignin derived bio-oil model compound using mesoporous solid catalysts. Research on Chemical Intermediates, 2016, 42, 3-17.	1.3	15
42	Optimization of unsupported CoMo catalysts for decarboxylation of oleic acid. Catalysis Communications, 2015, 67, 16-20.	1.6	53
43	Deoxygenation of oleic acid over Ce(1–x)Zr(x)O2 catalysts in hydrogen environment. Renewable Energy, 2014, 65, 36-40.	4.3	48
44	Redox-buffer effect of Fe2+ ions on the selective olefin/paraffin separation and hydrogen tolerance of a Cu+-based mesoporous adsorbent. Journal of Materials Chemistry A, 2013, 1, 6653.	5.2	22
45	A New Type of Efficient CO ₂ Adsorbent with Improved Thermal Stability: Selfâ€Assembled Nanohybrids with Optimized Microporosity and Gas Adsorption Functions. Advanced Functional Materials, 2013, 23, 4377-4385.	7.8	25
46	Polyimide nonwoven fabric-reinforced, flexible phosphosilicate glass composite membranes for high-temperature/low-humidity proton exchange membrane fuel cells. Journal of Materials Chemistry, 2012, 22, 18550.	6.7	27
47	Deoxygenation of microalgal oil into hydrocarbon with precious metal catalysts: Optimization of reaction conditions and supports. Energy, 2012, 47, 25-30.	4.5	65
48	Upgrading of biofuel by the catalytic deoxygenation of biomass. Korean Journal of Chemical Engineering, 2012, 29, 1657-1665.	1.2	81
49	Electrochemical oxidation of some basic alcohols on multiwalled carbon nanotube–platinum composites. Bulletin of Materials Science, 2012, 35, 545-550.	0.8	6
50	Decarboxylation of microalgal oil without hydrogen into hydrocarbon for the production of transportation fuel. Catalysis Today, 2012, 185, 313-317.	2.2	57
51	The effect of calcination temperature on the performance of Ni/MgO–Al2O3 catalysts for decarboxylation of oleic acid. Catalysis Today, 2011, 164, 457-460.	2.2	79
52	Hydrocarbon production from decarboxylation of fatty acid without hydrogen. Catalysis Today, 2010, 156, 44-48.	2.2	95
53	Characterization of the Porous Structure of SBA-15. Chemistry of Materials, 2000, 12, 1961-1968.	3.2	1,280