Chang Hyun Ko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4020249/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of the Porous Structure of SBA-15. Chemistry of Materials, 2000, 12, 1961-1968.	3.2	1,280
2	Catalytic Hydrodeoxygenation of Bio-oil Model Compounds over Pt/HY Catalyst. Scientific Reports, 2016, 6, 28765.	1.6	133
3	Hydrocarbon production from decarboxylation of fatty acid without hydrogen. Catalysis Today, 2010, 156, 44-48.	2.2	95
4	Upgrading of biofuel by the catalytic deoxygenation of biomass. Korean Journal of Chemical Engineering, 2012, 29, 1657-1665.	1.2	81
5	The effect of calcination temperature on the performance of Ni/MgO–Al2O3 catalysts for decarboxylation of oleic acid. Catalysis Today, 2011, 164, 457-460.	2.2	79
6	Deoxygenation of microalgal oil into hydrocarbon with precious metal catalysts: Optimization of reaction conditions and supports. Energy, 2012, 47, 25-30.	4.5	65
7	Enhancement of C O bond cleavage to afford aromatics in the hydrodeoxygenation of anisole over ruthenium-supporting mesoporous metal oxides. Applied Catalysis A: General, 2017, 544, 84-93.	2.2	62
8	Enhanced electrochemical performance for EDLC using ordered mesoporous carbons (CMK-3 and) Tj ETQq0 0 0) rgBT /Ove 2.8	rlock 10 Tf 5 62
9	Mild hydrodeoxygenation of phenolic lignin model compounds over a FeReO _x /ZrO ₂ catalyst: zirconia and rhenium oxide as efficient dehydration promoters. Green Chemistry, 2018, 20, 1472-1483.	4.6	59
10	Biohydrogen production from catalytic conversion of food waste via steam and air gasification using eggshell- and homo-type Ni/Al2O3 catalysts. Bioresource Technology, 2021, 320, 124313.	4.8	59
11	Decarboxylation of microalgal oil without hydrogen into hydrocarbon for the production of transportation fuel. Catalysis Today, 2012, 185, 313-317.	2.2	57
12	Optimization of unsupported CoMo catalysts for decarboxylation of oleic acid. Catalysis Communications, 2015, 67, 16-20.	1.6	53
13	Insight into the effect of metal and support for mild hydrodeoxygenation of lignin-derived phenolics to BTX aromatics. Chemical Engineering Journal, 2019, 377, 120121.	6.6	51
14	Deoxygenation of oleic acid over Ce(1–x)Zr(x)O2 catalysts in hydrogen environment. Renewable Energy, 2014, 65, 36-40.	4.3	48
15	Optimization of nano-catalysts for application in compact reformers. Chemical Engineering Journal, 2022, 431, 134299.	6.6	42
16	Ni catalysts for dry methane reforming prepared by A-site exsolution on mesoporous defect spinel magnesium aluminate. Applied Catalysis A: General, 2020, 602, 117694.	2.2	40
17	Facile production of biofuel via solvent-free deoxygenation of oleic acid using a CoMo catalyst. Applied Catalysis B: Environmental, 2018, 239, 644-653.	10.8	38
18	Valorization of hazardous COVID-19 mask waste while minimizing hazardous byproducts using catalytic gasification. Journal of Hazardous Materials, 2022, 423, 127222.	6.5	33

Chang Hyun Ko

#	Article	IF	CITATIONS
19	Preparation of egg-shell-type Ni/Ru bimetal alumina pellet catalysts: Steam methane reforming for hydrogen production. International Journal of Hydrogen Energy, 2017, 42, 18350-18357.	3.8	32
20	Comparison between unsupported mesoporous Co3O4 and supported Co3O4 on mesoporous silica as catalysts for N2O decomposition. Catalysis Communications, 2016, 82, 50-54.	1.6	29
21	Polyimide nonwoven fabric-reinforced, flexible phosphosilicate glass composite membranes for high-temperature/low-humidity proton exchange membrane fuel cells. Journal of Materials Chemistry, 2012, 22, 18550.	6.7	27
22	Rapid evaluation of coke resistance in catalysts for methane reforming using low steam-to-carbon ratio. Catalysis Today, 2018, 309, 140-146.	2.2	27
23	Ordered mesoporous carbon CMK-8 cathodes for high-power and long-cycle life sodium hybrid capacitors. Journal of Alloys and Compounds, 2018, 743, 639-645.	2.8	26
24	A New Type of Efficient CO ₂ Adsorbent with Improved Thermal Stability: Selfâ€Assembled Nanohybrids with Optimized Microporosity and Gas Adsorption Functions. Advanced Functional Materials, 2013, 23, 4377-4385.	7.8	25
25	Petroleum like biodiesel production by catalytic decarboxylation of oleic acid over Pd/Ce-ZrO2 under solvent-free condition. Applied Catalysis A: General, 2018, 563, 163-169.	2.2	24
26	Effect of calcination temperature on the association between free NiO species and catalytic activity of Niâ^'Ce0.6Zr0.4O2 deoxygenation catalysts for biodiesel production. Renewable Energy, 2019, 131, 144-151.	4.3	24
27	Elevated conversion of CO2 to versatile formate by a newly discovered formate dehydrogenase from Rhodobacter aestuarii. Bioresource Technology, 2020, 305, 123155.	4.8	23
28	Redox-buffer effect of Fe2+ ions on the selective olefin/paraffin separation and hydrogen tolerance of a Cu+-based mesoporous adsorbent. Journal of Materials Chemistry A, 2013, 1, 6653.	5.2	22
29	Facile preparation of egg-shell-type pellet catalysts using immiscibility between hydrophobic solvent and hydrophilic solution: Enhancement of catalytic activity due to position control of metallic nickel inside alumina pellet. Applied Catalysis A: General, 2017, 530, 211-216.	2.2	19
30	Egg-shell-type Ni supported on MgAl2O4 pellets as catalyst for steam methane reforming: Enhanced coke-resistance and pellet stability. Catalysis Today, 2020, 352, 157-165.	2.2	19
31	Simultaneous impregnation of Ni and an additive via one-step melt-infiltration: Effect of alkaline-earth metal (Ca, Mg, Sr, and Ba) addition on Ni/γ-Al2O3 for CO2 methanation. Chemical Engineering Journal, 2022, 428, 131393.	6.6	19
32	Hydrogen-rich gas production via steam gasification of food waste over basic oxides (MgO/CaO/SrO) promoted-Ni/Al2O3 catalysts. Chemosphere, 2022, 287, 132224.	4.2	18
33	Metallic nickel supported on mesoporous silica as catalyst for hydrodeoxygenation: effect of pore size and structure. Research on Chemical Intermediates, 2018, 44, 3723-3735.	1.3	16
34	Effect of eggshell- and homo-type Ni/Al2O3 catalysts on the pyrolysis of food waste under CO2 atmosphere. Journal of Environmental Management, 2021, 294, 112959.	3.8	16
35	Catalytic upgrading of lignin derived bio-oil model compound using mesoporous solid catalysts. Research on Chemical Intermediates, 2016, 42, 3-17.	1.3	15
36	Preparation of Ni-based egg-shell-type catalyst on cylinder-shaped alumina pellets and its application for hydrogen production via steam methane reforming. International Journal of Hydrogen Energy, 2019, 44, 5314-5323.	3.8	15

#	Article	IF	CITATIONS
37	Bio-Diesel Production from Deoxygenation Reaction Over Ce _{0.6} Zr _{0.4} O ₂ Supported Transition Metal (Ni, Cu, Co, and Mo) Catalysts. Journal of Nanoscience and Nanotechnology, 2016, 16, 4587-4592.	0.9	13
38	Acetaldehyde removal and increased H2/CO gas yield from biomass gasification over metal-loaded Kraft lignin char catalyst. Journal of Environmental Management, 2019, 232, 330-335.	3.8	12
39	Bifunctional metal doping engineering of Ni-supported alumina catalyst for dry methane reforming. Journal of Environmental Chemical Engineering, 2022, 10, 108058.	3.3	12
40	Production of H2- and CO-rich syngas from the CO2 gasification of cow manure over (Sr/Mg)-promoted-Ni/Al2O3 catalysts. International Journal of Hydrogen Energy, 2022, 47, 37218-37226.	3.8	10
41	Understanding the Effect of NO Adsorption on Potassium-Promoted Co3O4 for N2O Decomposition. Catalysis Letters, 2017, 147, 2886-2892.	1.4	7
42	Effect of cobalt metal loading on Fischer–Tropsch synthesis activities over Co/ĺ³-Al2O3 catalysts: CO conversion, C5+ productivity, and α value. Research on Chemical Intermediates, 2019, 45, 4417-4429.	1.3	7
43	Enhanced CO2 Methanation Reaction in C1 Chemistry over a Highly Dispersed Nickel Nanocatalyst Prepared Using the One-Step Melt-Infiltration Method. Catalysts, 2020, 10, 643.	1.6	7
44	Electrochemical oxidation of some basic alcohols on multiwalled carbon nanotube–platinum composites. Bulletin of Materials Science, 2012, 35, 545-550.	0.8	6
45	Catalytic Pyrolysis of <i>Pinus densiflora</i> Over Mesoporous Al ₂ O ₃ Catalysts. Journal of Nanoscience and Nanotechnology, 2018, 18, 6300-6303.	0.9	6
46	Enhancement in nickel-silica interface generation by surfactant-assisted melt-infiltration: Surfactant selection and application in CO2 hydrogenation. Chemical Engineering Journal, 2022, 437, 135166.	6.6	5
47	Mesoporous Titania as a Support of Gallium-Based Catalysts for Enhanced Ethane Dehydrogenation Performance. Catalysis Letters, 2021, 151, 2748-2761.	1.4	4
48	Enhanced CO2 electroconversion of Rhodobacter sphaeroides by cobalt-phosphate complex assisted water oxidation. Bioelectrochemistry, 2022, 145, 108102.	2.4	4
49	Catalytic Hydrodeoxygenation of Bio-Oils Derived from Pyrolysis of Cork Oak Using Supercritical Ethanol. Journal of Nanoscience and Nanotechnology, 2017, 17, 2674-2677.	0.9	3
50	Hydrodeoxygenation of Pyrolysis Bio-Oil Over Ni Impregnated Mesoporous Materials. Journal of Nanoscience and Nanotechnology, 2018, 18, 1331-1335.	0.9	3
51	<scp>Solid tate</scp> Pseudomorphic Synthesis of Hollow Silica Nanospheres Using Cyclic Diammonium Molecules. Bulletin of the Korean Chemical Society, 2021, 42, 463-466.	1.0	2
52	Catalytic Pyrolysis of Korean Pine (Pinus koraiensis) Nut Shell Over Mesoporous Al2O3. Journal of Nanoscience and Nanotechnology, 2018, 18, 1351-1355.	0.9	1
53	Impregnation of probiotics into porous TiO2 support for enhanced viability. Korean Journal of Chemical Engineering, 2021, 38, 475-479.	1.2	1